ME 109, HEAT TRANSFER (3)

Fall 2018

MWF 3-4; 277 Cory

Costas P. Grigoropoulos, Professor

6129 Etcheverry Hall

Phone: 642-2525

email:cgrigoro@berkeley.edu

http://ltl.berkeley.edu/

Off. Hrs.: M 1-2, W 10-11

Text: Fundamentals of Heat and Mass Transfer*

Bergman, Lavine, Incropera and De Witt

8th ed., John Wiley

GSI: Zacharias Vangelatos

zacharias_vangelatos@berkeley.edu

Problem Sets: Weekly posted on bcourses. Due by 4:00 pm on Fridays unless otherwise stated. Submit either in class or to the homework box on the first floor of Etcheverry Hall.

Week		Торіс
1	8/22	INTRODUCTION: rates of energy transfer;
		modes of heat transfer;
2	8/27	CONDUCTION:
therma	al properties.	rate equation; boundary and initial conditions;
STATE	E	ONE-DIMENSIONAL, STEADY-
		CONDUCTION: plane wall, cylinder and sphere;
		composite walls; equivalent thermal circuits.

3	9/3	Holiday – Labor Day
		Conduction with internal heat generation
		Extended surfaces (fins)
4	9/10	TWO-DIMENSIONAL, STEADY-STATE
		CONDUCTION
		Numerical steady-state heat transfer.
5	9/17	TRANSIENT (UNSTEADY) CONDUCTION: Lumped
		capacitance.
		Spatial effects: Plane wall; radial systems
with		
	- /	convection.
6	9/24	Semi-infinite solid; Multi-dimensional systems.
		Numerical transient heat transfer.
7	10/1	Review
	10/5	FIRST MIDTERM(Conduction)
8	10/8	CONVECTION: Boundary layers; laminar
		and turbulent flow; convection transfer equations;
		approximations.
		dimensionless parameters;
		analogies; turbulence.
9	10/15	EXTERNAL FLOWS: Flat plate; cylinder;
		sphere, tube banks; packed beds.
10	10/22	INTERNAL FLOWS: Hydrodynamic and
		thermal considerations; energy balance, correlations.
		FREE CONVECTION: Physical; phenomena; equations;
		similarity; laminar and turbulent flows.
		empirical correlations: free and enclosed flows.
11	10/29	HEAT EXCHANGERS
		Review of Convection – Problems

12	11/5	SECOND MIDTERM(Convection)
	11/7	RADIATION: Concepts - Intensity; blackbody radiation.
		Surface emission, absorption,
		reflection and transmission;
13	11/12	Holiday - Veterans Day
	11/14	Kirchoff's law; gray surface; environmental radiation
		RADIATION EXCHANGE BETWEEN SURFACES:
		View or shape factor; blackbody radiation exchange.
14	11/19	Radiation exchange between gray
		surfaces; other considerations
	11/23	Holiday – Thanksgiving
15	11/26	Radiation network method
	11/30	Review
	12/11	FINAL EXAMINATION, Tue 7-10 pm
		(Conduction, Convection, Radiation)

Grade to be weighted 10% on homework, 25% on each midterm exam, and 40% on the final exam.

Exams are closed book, notes and homework solutions/problems. 2 formula pages will be allowed in the 1st midterm, 4 pages in the 2ndmidterm and 6 pages in the final exam.

*Earlier editions of the text or the international edition will be adequate