ME C85 / CE C30: Introduction to Solid Mechanics, Professor Tony M. Keaveny Lecture Schedule and Syllabus: Spring 2017

Date	Topic	Reading *
1/17 1/19	Introduction; Forces and vectors Moments and vectors	Chapter 1–2 3.1–3.6
1/24 1/26	Statically equivalent forces and force-couples Free body diagrams for rigid bodies	3.7–3.8 4.2, 4.5
1/31 2/2	Static equilibrium of rigid bodies Applications	4.1, 4.3, 4.4, 4.6 4.7–4.8
2/7 2/9	Trusses Frames and machines	5.1–5.4 5.5
2/14 2/16	Normal and shear stresses Applications	7.1–7.6 7.7–7.8
2/21 2/23	Hooke's Law for elastic solids Deformation and axial loading	Chapter 8, 14.11 9.1–9.6
2/28 3/2	Applications & Review Center of mass; distributed loads; areal inertia	6.1–6.5, 3.9
3/7 3/9	Torsion of circular shafts Midterm Exam #1 (on lectures 1/17–2/28)	10.1–10.3 In Class
3/14 3/16	Shear and bending moment diagrams Beams and bending stresses	11.1–11.2 11.3–11.5
3/21 3/23	Deformation and twisting Deformation and bending	10.4–10.5 16.1–16.2, 16.4–16.5
3/28 3/30	SPRING BREAK SPRING BREAK	
4/4 4/6	Transverse shear Applications	Chapter 12
4/11 4/13	Superposition and combined loading Stress transformation; Mohr's Circle	13.1–13.2 14.1-14.7
4/18 4/20	Buckling and instabilities Stress concentrations, fatigue	17.1-17.3
4/25 4/27	Design criteria and optimization Summary	
5/12	Final Exam (7:00-10:00 pm; on all lectures)	Location TBA

^{*} Refer to: Hibbeler, "Statics and Mechanics of Materials", 5th Edition, McGraw Hill

Time and location:

3:30 - 5:00 PM Tue, Thur; 3 LeConte

Discussion sections

5:00 – 6:00 PM Tue; 247 Cory Hall 5:00 – 6:00 PM Thu; 247 Cory Hall

Instructor:

Prof. Tony M. Keaveny <tonykeaveny@berkeley.edu>

Office hours: 11:00 AM - 1:00 PM, Tue; 11:00 AM - NOON, Thur; 5124 Etcheverry Hall

GSI:

Magdalini Ntetsika <ntetsika@berkeley.edu>

Office hours: NOON-1:00 PM Wed-Thu-Fri; 136 Hesse Hall

Required textbook:

RC Hibbeler, "Statics and Mechanics of Materials" 5th edition, Pearson: ISBN 9780134382593. Available at the campus bookstore. <u>FYI we are not doing the Mastering Engineering</u> module so do not order that or pay for it!

The latest edition of the textbook is the 5^{th} edition, which is recommended for the course. However, you can also try to get the 4^{th} or earlier editions, although their problems may be different or differently numbered than in the 5^{th} edition. This is unlikely to be a big issue, but you will need to sort this out yourself since the homework problems will be assigned from the 5^{th} edition.

Homework:

Homeworks are essential preparation for the exams, and will be assigned weekly, each Monday at 10 AM. For each assignment, the homework will be due <u>by 10 AM on the Monday two weeks later</u>, submitted electronically via *bCourses* in a PDF file (scanners are available in 2107 Etcheverry Hall). Detailed solutions will be posted on *bCourses* regularly for you to review. **No late homeworks will be accepted**, but one homework can be missed without penalty.

In addition to the HWs, there will be three Matlab assignments and a final Matlab-based project. **No late assignments will be accepted.** If you think you may not be able to submit a Matlab assignment on time, please discuss <u>ahead of time</u> with Professor Keaveny.

Exams:

There is one mid-term exam (in class) and one final exam (location TBA). All exams are closed book and without notes but all required formulae will be provided.

Grading system:

Homeworks10%Matlab Assignments20%Mid-term Exam20%Final Exam50%