Course Information

Lecture Schedule: Tu-Th 9-10AM, GSPP 150

Lab Schedule: W 3-5 (5-7) PM, 345 Davis Hall

Catalog Description:

Application of the concepts and methods of probability theory and statistical inference to Civil & Environmental Engineering (CEE) problems and data; graphical data analysis and sampling; elements of set theory; elements of probability theory; random variables and expectation; simulation; statistical inference and geostatistics. Applications to a wide range of CEE problems involving real data will be developed, using both pre-existing and student-prepared MATLAB codes.

Prerequisites: E7 (MATLAB!), Math 1B (or concurrent enrollment). No credit will be given after taking Stat25.

Units: 3

Course Objective:

Introduce the student to the concepts and methods of probability theory and statistical inference by way of their application to CEE problems involving *real* data. Graphical and computational methods, using MATLAB, will be emphasized. The course also serves to introduce the student to a variety of CEE problems and data through their statistical/probabilistic analysis.

Required Textbook:

William Navidi, *Statistics for Engineers and Scientists*, Fourth Edition, McGraw Hill (the 3rd edition is cheaper and could also work, but you will need to correlate the reading assignments with the 4th edition).

Course Websites:

On bCourses (https://bcourses.berkeley.edu/). Contains assignments, labs, solution sets, lecture notes, supplementary readings.

On Piazza (https://piazza.com/berkeley/fall2018/ce93/home), hosts current discussions on material. This link will guide you how to enroll our CEE93 class: <u>http://support.piazza.com/customer/portal/articles/1646659-enroll-in-a-class</u>. When posting questions on piazza, please locate your questions under the correct folders. For example, all questions about HW#1, please post under the folder of hw1.

Homework:

Assignments will be given weekly. See bCourses for the assignments and due dates. Assignments are due Tuesday at the beginning of class. 20% is subtracted from the grade of any assignment turned in late, up to the following Thursday at the beginning of class. We will not accept assignments turned in after that time.

Labs:

Weekly two hour sessions where students are trained on statistical and probabilistic manipulation of data using computer software (MATLAB). Topics covered include histogram analysis, distribution fitting and plotting of all needed graphs. Lab assignments will be posted on bCourses. The assignments should be submitted electronically by the end of the lab section, but no later than 8 PM of same day.

Exams:

There will be two midterm exams and a final exam for this course, and multiple soft-quizzes. See the course schedule.

Grading:

Course grade: 30pts for final exam, 15 points for each of the two midterms, 20 pts for HW assignments and lab reports, 20 pts for quizzes. Expect to have a quiz in every class (starting August 29). From N quizzes, N-2 will be used for grading.

Instructors:

Name	Contact	Office	Office Hours	

CE 93, Engineering Data Analysis

Prof. Yoram Rubin, Instructor	rubin@ce.berkeley.edu	627 Davis	Tue, Thu 3-4PM and Piazza
Jiancong (Nigel) Chen, GSI	nigel_chen1993@berkeley.edu. Note: Questions on technical matters should be posted on Piazza (which allows anonymous posting). Personal emails should be limited to personal matters.	305 Davis	Mon 3:30 - 5PM Thu 12-1:30PM + Piazza

Course Schedule

Week (Data)	Торіс	Reading	Homework	Lab Sebedulo
(Date)		Assignment	Due Date	Scheuule
1 (8/22-8/24)	Introduction, course organization and objectives.	N* 1.1- 1.3		
First class on	Populations and samples. Types of data. Types of			
August 25	dispersion percentiles Graphical summaries:			
	histograms cumulative frequency diagrams box plots			
	scatter plots, correlations			
2 (8/27-8/31)	Probability: Experiments, sample space, events, algebra	N 2.1-2.2		Lab 1
	of events. Axioms of probability. Combinatorics.			Graphical Data
				Analysis
3 (9/3-9/7)	Conditional probability, total probability theorem,	N 2.3	Set 1	Lab 2
	Bayes' formula. Independent events and the			Numerical
	multiplication rule.			Summaries of Data
4 (9/10-9/14)	Random variables. Probability distributions for discrete	N 2.4-2.5	Set 2	Lab 3
	and continuous RVs: PMF, PDF, CDF. Mean and			Elements of
	variance of an KV. Linear functions of KVs.		~ ~ ~	Probability Theory
5 (9/17-9/21)	Jointly distributed RVs. Marginal and conditional		Set 3	Lab 4
	distributions. Correlation, covariance, and			Random Variables
6(0/24,0/28)	Midterm this week on Thursdoy 9/27	N 2.6	S at 1	
0 (9/24-9/28)	Milderin this week on Thursday 9/27	IN 2.0	Set 4	
7 (10/1-10/5)	Special random variables: Bernoulli, binomial, Poisson,	N 4.1-4.8	Set 5	Lab 5
	hypergeometric. Uniform, normal, exponential, gamma,			Seismic Hazard
	Central limit theorem.			Analysis I
8 (10/8-10/12)	Uniform, normal, exponential, gamma, Central limit	N 4.9-4.12	Set 6	Lab 6
	theorem.			Distributions
9 (10/15-	Point estimation, Method of Moments, Maximum	N 4.9-4.12, N	Set 7	
10/19)	Likelihood.	5.1-5.7		
10 (10/22-	Confidence intervals for means and proportions. Large	N 6.1-6.4	Set 8	Lab 7
10/26)	sample and small sample cases. Intro to hypothesis			Central Limit
	testing for means and proportions.			Theorem
11 (10/29-	Hypothesis testing, simulations	N 6.5-6.11. 6.15		Lab 8
11/2)		,		Parameter Estimation
12 (11/5-11/9)	Midterm this week on Thursday 11/8		Set 9	
, , ,				
13 (11/12-	Geostatistics	ТВА	Set 10	Lab 9
11/16)				Hypothesis Testing
14 (11/19-	Geostatistics (Thanksgiving)	TBA	Set 11	
11/23)				
15 (11/26-	Review (November 30 th is last day of instruction)		Set 12	Lab 10 Geostatistics
16(12/2, 12/7)	Recitation Week			UCUSIALISLICS
10(12/3-12/7)				
12/11 3pm tp	Final Exam			
орт				

*N-William Navidi, Statistics for Engineers and Scientists, Fourth Edition