UC Berkeley Departments of Mechanical Engineering and Bioengineering ME C176 and BIOE C119 (4 units) Fall 2017 "Orthopaedic Biomechanics"

Professor Tony M. Keaveny, 5124 Etcheverry Hall tonykeaveny@berkeley.edu Office Hours: TUE AND THUR 1:30–3:00 PM

Graduate Student Instructor: TBN

Prerequisites: ME C85 (or CEE C30) or BIOE 102; or equivalent.

Working knowledge of MATLAB is required. Prior knowledge of biology or anatomy is not assumed.

Open for undergraduate students only.

Lectures: TUE and THUR 9:30 AM –11:00 AM, 150 GSPP

Discussion: Mon 10:00–11:00 am, 1171 Etcheverry Hall; Wed 9:00–10:00 am, 10 Jacobs Hall

Computer Lab: 1171/2107 ETCHEVERRY HALL

Textbook: Bartel DL, Davy DT, and Keaveny TM: "Orthopaedic Biomechanics: Mechanics and Design in

Musculoskeletal Systems" Pearson Prentice Hall, New Jersey, 2006.

Other: Please check **bCourses** regularly for weekly homeworks and any other assignments or announcements.

COURSE DESCRIPTION

From a biomechanical perspective, the healthy human skeleton is an optimal structure that has adapted its form in response to its function. Studying the mechanics of the skeleton therefore provides information that can be used not only to design artificial prostheses and materials — and thus address specific health care issues — but also to aid in the design of more traditional engineering structures by understanding the behavior and underlying design features of this complex biodynamic structure. Also, by addressing design and analysis principles as applied to orthopaedics, we will encounter fundamental issues — biological heterogeneity, uncertainty, and regulatory constraints — that play a critical role in designing any type of medical device. Thus, the purpose of this course is threefold:

- develop expertise in orthopaedic biomechanics;
- learn core principles for the design and analysis of any biomedical implant;
- enhance fundamental skills in engineering design and analysis.

Specific examples of mechanical engineering concepts that will be used include statics, dynamics, optimization theory, composite beam theory, beam-on-elastic-foundation theory, Hertz contact theory, and viscoelasticity. The course has three main themes: Skeletal Forces and Motion; Tissue and Organ Mechanics; and Implant Design and Analysis. Specific biomechanics topics will include loads on human joints; dynamic analysis of human motion; mechanical properties of musculoskeletal tissues including bone, cartilage, tendon, ligament, and muscle; osteoporosis and bone strength assessment; composition and mechanical behavior of orthopaedic biomaterials; and design/analysis of artificial joint, spine, and fracture fixation prostheses; vehicular safety biomechanics. All students will present briefly in class on an application topic of their choice. Students will be challenged with a MATLAB-based course project to integrate the course material in an attempt to gain insight into contemporary design/analysis problems; this project will be prefaced by two simpler MATLAB-based mini-project assignments and further complemented by weekly analytical biomechanics assignments.

The course is ideal for undergraduate students interested in biomechanical engineering, those wishing to further develop technical skills in design and analysis of mechanical systems and in using MATLAB, and those interested in addressing contemporary engineering problems directly related to human healthcare.

DATE	LECTURE TOPIC	MATLAB PROJECTS REAL	DING*
Skeletal Forces Aug. 24	and Motion Introduction; basic anatomy		2–21
Aug. 29	Static analysis of skeletal systems I		23–35
Aug. 31	Static analysis of skeletal systems II		23–35
Sep. 5	The force distribution problem		35–44
Sep. 7	Kinematics and dynamics I		44–58
Sep. 12	Joint stability	MINI MATLAB 1 (due 9/28)	58–64
Sep. 14	Kinematics and dynamics II		64–65
Tissue Biomechanics and Materials			
Sep. 19	Impact biomechanics		Notes
Sep. 21	Viscoelasticity		154–163
Sep. 26	Tissue mechanics I		71–116
Sep. 28	Tissue mechanics II		121–147
Oct. 3 Oct. 5	MID-TERM EXAM (all course material through Sep 1- Muscle mechanics		; 163–164
Oct. 10	Composite beam theory		168–176
Oct. 12	Unsymmetrical beams		177–182
Oct. 17	Case studies: whole-bone biomechanics		183–198
Oct. 19	Orthopaedic implant materials		235–245
Implant Design and Analysis			
Oct. 24	Design principles, optimal design	FINAL MATLAB PROJECT PART A (due 11/09)	245–259
Oct. 26	Beam-on-elastic-foundation theory I		203–213
Oct. 31	Beam-on-elastic-foundation theory II	223–231	304–310
Nov. 2	Contact stresses		; 335–349
Nov. 7	Design of knee prostheses	FINAL MATLAB PROJECT PART B (due 11/30)	314–332
Nov. 9	Design of hip prostheses		290–304; 310
Nov. 14	Design of spine prostheses		Notes
Nov. 16	Design of fracture-fixation prostheses		261–287
Nov. 21 Nov. 23	Current research in orthopaedic biomechanics THANKSGIVING HOLIDAY		
Nov. 28 Nov. 30	Vehicular safety biomechanics Course summary, closure		Notes
Dec. 5 Dec. 7	Reading, Review, and Recitation Reading, Review, and Recitation		
Dec. 13	FINAL EXAM, 11:30 AM –2:30 PM, Location TBA (all	l course material; closed-book; formulae provided)	

 $^{{\}it *Reading assignments refer to the course textbook unless specified otherwise.}$

Grading

All homeworks and projects are to be uploaded on *bCourses* by 2 pm of the assigned day. By 6 pm of that day, solutions to the homeworks will be posted on *bCourses*. As a result of this fixed schedule, **late homeworks or projects** will **not be accepted without prior approval from Professor Keaveny.**

Homework grading:

Successful completion of homeworks is essential to prepare for the exams.

Per homework, full marks are awarded if the student *reasonably attempts* all questions.

Per semester, homework grades will be based on the average grade for all but one homework, *i.e.* students are permitted to miss one homework without it impacting their overall homework grade.

Class participation is based on active involvement in class activities and discussions. Default score is 3%, which is moved up or down depending on degree of participation — so participate!

The topic of the Final Project is the same for all students.

All exams are closed book, closed notes. A comprehensive "cheat-sheet" will be provided for all exams, containing all formulae required. Thus, there is no need to memorize any formulae.

For this upper division 4-unit elective class, the grading scheme is designed to ensure that if you do well on the homeworks, participation, and project, you should not fail:

Grading: Weekly homeworks 5% Class participation 5%

Matlab assignments (2 mini + final project) 40% (5+10+25)

Mid-term exam 15% Final exam 35%