Chemistry 120A Syllabus, Fall 2015

Instructor: Eric Neuscamman eneuscamman@berkeley.edu 231 Hildebrand

GSIs: Qinghui (Grace) Ge qinghui.g@berkeley.edu G47 Gilman

Qiao Kong kongqiao@berkeley.edu 315 Hildebrand

Luning (Chris) Zhao zhaoln@berkeley.edu G08 Gilman

Grade Composition: 15% Problem Sets

15% Midterm 1 15% Midterm 2 15% Midterm 3 40% Final Exam

If an improvement, the final exam grade will replace the worst scoring midterm.

Late problem sets will receive no credit.

Math Expectations: Sophomore-level Linear Algebra and Differential Equations

Text: Physical Chemistry: A Molecular Approach by McQuarrie and Simon

Topics: motivations for quantum mechanics

vector and inner product spaces linear and Hermitian operators postulates of quantum mechanics

the uncertainty principle particle wave duality 1-dimensional systems

wave packets

quantum harmonic oscillators angular momentum and spin

commutator algebra the hydrogen atom the variational principle

time-independent perturbation theory time-dependent perturbation theory Fermi's golden rule and spectroscopy

many-electron systems
Fermionic statistics
mean-field theory
chemical bonds
second quantization
wave function symmetry

Note that course content and ordering is subject to change due to the fickle-faculty uncertainty principle.