
Draft Syllabus:

CS194-15 Engineering Parallel Software

Kurt Keutzer

EECS, University of California, Berkeley

Fall 2016: 2-3:30 Soda 306

As the basic computing device ranging single cell phones to racks of hardware in cloud

computing, parallel processors are emerging as the pervasive computing platform of our time.

This course will enable advanced undergraduate students to design, implement, optimize, and

verify programs to run on present generations of parallel processors.

There are four principal themes that are pursued in this course:

 Software engineering

 Performance Programming

 Programming in Parallel Languages

 Course project

Software Engineering and Software Architecture

Our approach to this course reflects our view that a well-designed software architecture is a key

to designing parallel software, and a key to software architecture is design patterns and a pattern

language. Our course will use Our Pattern Language as the basis for describing how to design,

implement, verify, and optimize parallel programs. Following this approach we will introduce

each of the major patterns that are used in developing a high-level architecture of a program.

Descriptions of these ten structural and thirteen computational patterns, together with other

readings, may be found at: https://patterns.eecs.berkeley.edu/.

Performance Programming

Writing efficient parallel programs requires insights into the hardware architecture of

contemporary parallel processors as well as an understanding as to how to write efficient code in

general. As a result a significant amount of time in the course will be spent on looking “under the

hood” of contemporary sequential and multiprocessors and identifying the key architectural

details, such as non-uniform memory architecture (NUMA), that are necessary to write high

performance code.

Programming in Parallel Languages

Other lectures and laboratories of the course will focus on implementation using contemporary

parallel programming languages, verification of parallel software using invariants and testing,

and performance tuning and optimization. Particular languages covered typically include

OpenMP, MPI, and OpenCL.

Course Projects

The final third of the course will be an open-ended course project. These projects allow students

to demonstrate their mastery of the course concepts mentioned above. Students will create their

own projects in project teams of 4-6 students.

Prerequisites

Students should have taken the following or equivalents:

 Basic programming course using Java, C or C++

 Undergraduate course on computer organization

 Linear algebra

It is recommended that students have taken:

 At least one upper division course that includes significant programming assignments

(e.g. Compilers, Operating Systems, or Software Engineering)

Course Work and Grading

The course consists of twice-weekly lectures in a “flipped classroom” format. Each Tuesday

class session will be a lab session. Each Thursday session will review the class, quizzes, and

homework assignments. For the first two thirds of the course, there will be a series of

programming assignments. There will be two examinations during the course.

 Grading (If you’re following your GPA pay close attention!!!!):

 20% Assignments (aka Machine Problems (MPs))

 30% Two examinations

 35% Final Project: individual performance assessed

• 5% proposal; 10% final content and presentation and ppt; 20% project

 On-line Quizzes: 10%

 5% Bonus: Attendance, class participation – can bump you up ½ grade, e.g. B+ A-

Course Staff

Professor: Kurt Keutzer

Guest Lecturer: Tim Mattson, Intel

TA: Russell Nibbelink

Recommended Course Textbook

Updated version of: Patterns for Parallel Programming, T. Mattson, B. Sanders, B. Massingill,

Addison Wesley, 2005. Will be distributed in class.

Course Lab and Discussions:

Lab computing facilities will be in Soda 330. Other facilities will be available for projects.

Course Assignments Will Be Selected From Among this List

1. Computer Architecture - Measure L1/L2/L3 bandwidth and latency on our lab machines. Also,
investigate measured ILP for a handful of different SGEMM implementations. Performance in
MFlops/s increases, but ILP drops. Also serves as a warmup / refresher for the small subset of
C++ we use for the lab assignments. Follows the material from lecture 3 (sequential processor
performance)

2. Parallel Matrix Multiply (DGEMM) - Write naive parallel DGEMM using OMP for loops, OMP
tasks, and pthreads. Serves as a simple warm-up for the basic threading libraries. Advanced
question on how GCC converts code with OpenMP pragmas into parallel code. Follows the
material from lecture 2/4 (parallel programming on shared memory computers)

3. Optimize Matrix Multiply (DGEMM) - Optimize the naive parallel matrix multiply for both locality
and data parallelism (using SSE2). Students get familiar with SSE2 intrinsics if they want to use
them for their final projects. Follows the material from lecture 6/8 (memory subsystem
performance)

4. Introduction to OpenCL - Students write both VVADD and SGEMM in OpenCL. They will write
the kernels. Follows lecture 9 / 10. (Data parallelism and CUDA).

5. OpenCL + OpenGL - Students perform a handful of simple graphics operations on an image.
Follows lecture 9 / 10. (Data parallelism and CUDA).

6. Advanced OpenCL - Students write a reduction routine using the ideas presented in class. They
also write array compaction using scan. Follows lecture 9 / 10. (Data parallelism and CUDA).

Syllabus, Fall 2016: Classes are at 2:00 – 3:30PM in Soda 306

Lectures are available on-line at: https://cvw.cac.cornell.edu/eps/default

Lectures should be viewed and quizzes taken BEFORE the corresponding class in the

syllabus.

Week Date What Topic

Week 1

Tuesday

8/23
No class

Thursday

8/25
Lecture 1

First Lecture: Intro, Background, Course Objectives

and Course Projects

--Keutzer

Week 2

Tuesday

8/30
Lecture 2

A programmer’s introduction to parallel computing:

Amdahl's law, Concurrency vs. Parallelism, and the

jargon of parallel computing. Getting started with

OpenMP and Pthreads.

--Mattson

Thursday

9/1
Lecture 3

Sequential Processor Performance 1:

Example; Pipelining, Superscalar, etc.; Compiler

Optimizations; --Keutzer

Tuesday

9/6
Discussion 1

Intro to the Lab Environment.

Assignment 1 goes out.

Tuesday

9/6
Lecture 4 Sequential Processor Performance Part 2 --Keutzer

Thursday

9/8
Lecture 5

Parallel Processor Architectures and the Future of

Computing

--Keutzer

Tuesday

9/13
Discussion 2

Assignment 1 due. Assignment 2 goes out.

Tuesday

9/13
Lecture 6

Optimizing Program Performance and the Roofline

Model

- Keutzer

Thursday

9/15
Lecture 7 Architecting Parallel Software with Patterns: Another

way to think about parallelism - Keutzer

Wednesday

9/20
Discussion 3 Assignment 2 due. Study for midterm.

Tuesday

9/20
Lecture 8

Performance of sequential processors: exploring the

memory system with matrix multiplication

--Mattson

Thursday

9/22
Lecture 9 A programmers introduction to parallel computing:

making concurrency safe -- Mattson

Week 6

Tuesday

9/27
No discussion Assignment 3 goes out.

Tuesday

9/27
Midterm Midterm 1

Thursday

9/29
Lecture 10

Data Parallelism

-- video lecture by David Sheffield

Week 7

Tuesday

10/4
Discussion 5 Assignment 3 due. Assignment 4 goes out.

Tuesday

10/4
Lecture 11

Heterogeneous computing using and OpenCL

(CUDA also)

-- video lecture by David Sheffield

Thurs

10/6
Lecture 12

Structured grid, Geometric Decomposition, and MPI

--Mattson

Week 8

Wednesday

10/11
Discussion 6

Assignment 4 due. Assignment 5 goes out.

Project proposal due at Midnight

Tuesday

10/11
Lecture 13 Mid-semester review in Video

Thursday

10/13
Lecture 14

Structural Patterns and Parallelism Part 1 – Keutzer

Video

Project proposals presented in class

Week 9

Tuesday

10/18
Discussion 7 Assignment 5 due. Assignment 6 goes out.

Tuesday

10/18
Lecture 15

Structural Patterns and Parallelism Pt2 – Keutzer video

Thurs

10/20
Lecture 16

 Parallelizing logic optimization using patterns - part 1

Project progress presented in class

Week 10

Tuesday

10/25
Discussion 8 Assignment 6 due. Midterm 2 review and discussion.

Tuesday

10/25
Lecture 17

Parallelizing logic optimization using patterns - part 2 –

Keutzer video – Project progress presented in class

Thursday

10/27
Midterm 2 Midterm 2

Week 11

Tuesday

11/1
Discussion 9 Project meetings: show up with evidence of work!

Tuesday

11/1
Lecture 18

Computational patterns: dense linear algebra - pt1

Videos by Michael Anderson

Thursday

11/3
Lecture 19

Computational patterns: Dense linear algebra - pt2 Video

by Michael Anderson

Week 12

Tuesday

11/8
 Holiday

Tuesday

11/8
Lecture 20

Computational patterns - Sparse linear algebra - pt1 –

video by Michael Anderson

Project software architecture presented in class

Thursday

11/10
Lecture 21

Computational Patterns: Sparse linear algebra - pt2 –

Video by Michael Anderson

Project software architecture presented in class

Week 13

Tuesday

11/15
Discussion 11 Project meetings: show up with evidence of work!

Tuesday

11/15
Lecture 22 Parallelizing speech recognition - pt1 –Keutzer video

Thurs

11/17
Lecture 23

Parallelizing speech recognition - pt2

--Keutzer

Week 14
Tues
11/22

Lecture 24 Your career in software - Keutzer

Week 15

Tuesday

11/29
Discussion 12 discuss projects

Tuesday

11/29

Presentations/

Or defer

Project-related office hours

Thurs

12/1

Presentations/

Or defer

Project-related office hours

Week 16

Tuesday

12/6

Presentations/if

necessary
Project presentations

Thurs

12/8

Presentations/

If necessary

Project presentations

