Chemical Engineering 140

Chemical Process Analysis Fall 2015

Instructors: C.J. Radke 101E Gilman, 642-5204, radke@berkeley.edu

Office Hours: Mon 3-4 p, Tues 3-4 p, Chem Library 100E.

C. Cerretani 313 Gilman, 642-1634, ccerretani@berkeley.edu

Office Hours (during Radke absence) TBA

Teaching Assistants: Peter Dudenas pete.dudenas@berkeley.edu

Trenton Otto trentonotto@berkeley.edu
Michael Su msu19@berkeley.edu

Office Hours: Tues 6-8 p Chem Library 100D

Wed 6-8 p Chem Library 100F Thurs 6-8 p Chem Library 100E

Further consultation with either the instructor or the teaching assistants is available by individual appointment.

Objectives: CBE 140 introduces the principles of mass and energy balances along with equilibrium

and rate expressions. Application of these principles is made towards the solution of basic chemical engineering processing problems. This course is foundational for the

chemical engineering curriculum.

Text: Required:

Felder and Rousseau. *Elementary Principles of Chemical Processes*. John Wiley and Sons, Inc. 3rd Edition, 2005.

Recommended (on 2 hr reserve in the Chemistry or Engineering Library):

R. M. Murphy, Introduction to Chemical Processes, McGraw Hill, 2007

Chem. Lib. Call Number: TP155.7.M87 2007

Himmelblau and Riggs. *Basic Principles and Calculations in Chemical Engineering*. Prentice-Hall, 8th Ed. 2012. Chem. Lib. Call Number: TP151.H5 2012

Duncan and Reimer. *Chemical Engineering Design and Analysis: An Introduction*. Cambridge University Press. 1998 Chem. Lib. Call Number: TP155.D74 1998

Russell and Denn. *Introduction to Chemical Engineering Analysis*. John Wiley and Sons, Inc. 1972. Chem. Lib. Call Number: TP155.R88

R. N. Shreve, *The Chemical Process Industries*. McGraw Hill, 1956. Kresge Engineering Lib. Call Number: TP145.S5 1956 **Description:** Analysis of chemical processes depends on the ability to construct balances on material

and energy within a system. Subsequent courses in the curriculum will build on this skill by elaborating on the selection and nature of different terms in these balances. Class examples will be drawn from standard chemical engineering unit operations and processes, and some homework will be solved using spreadsheet and computational computer software. The text will be followed loosely, and students are encouraged to refer to other recommended texts when necessary.

The course grade will be determined by the following:

Course Grade:

Homework: 10% (lowest 2 scores will be dropped if course

evaluations are turned in)

Midterm Exams (2): 25 % (09/30) 7-8 p, Hearst Annex A0001

30 % (11/04) 7-8 p, Hearst Annex A0001

Final Exam: 35 % (**12/14**) 7-10 p, TBA

Homework: Homework will be assigned on Monday of each week and will be due by the end of class on Wednesday one week later. No late homework will be accepted. Assignments, solutions, and handouts will be posted at the class becourse website.

Examinations: There will be no regrades of examinations. Use of electronic devices with access to internet is not permitted.