Fall Semester 2015 J. Casey

ME 185: Introduction to Continuum Mechanics

TuTh 3:30-5:00, 3113 Etcheverry Hall

jimcasey@berkeley.edu

SYLLABUS

0 INTRODUCTION

- 0.1 The continuum: a mathematical model. Phenomenological theories. Purely mechanical versus thermodynamical theories. Material behavior and constitutive equations: examples from elasticity, fluid mechanics, rigid body mechanics. Historical remarks.
- 0.2 The six primitive concepts of the purely mechanical theory: body, space, time, mass, force, torque. One, two, and three-dimensional bodies, and combinations of them.
- 0.3 Coordinate systems. Reference frames in classical mechanics.
- 0.4 The three balance laws: mass, linear momentum, angular momentum. Remark on Newton's Laws versus Euler's Laws.
- 0.5 Scalars, vectors, tensors. Euclidean vector spaces. Index notation. Tensor product and direct notation. Multilinear mappings and determinants.
- 0.6 Derivatives and differentials.

1 KINEMATICS

- 1.1 Body, configurations, motions. Convected curvilinear and Cartesian coordinates.
- 1.2 Particle velocity. The deformation gradient.
- 1.3 Material, referential, and spatial descriptions of fields.
- 1.4 The material derivative.
- 1.5 Material transport of lines, surfaces and volumes.
- 1.5 Deformation of a line element. The Cauchy-Green deformation tensors and their properties. The stretch tensors. Maximal stretching. Method of Lagrange multipliers. Strain tensors.
- 1.7 Deformation of area and volume elements.
- 1.8 The polar decomposition theorem.
- 1.9 Representation of the rotation tensor. Application to rigid body kinematics.
- 1.10 The velocity gradient. The rate of deformation tensor (or stretching tensor), and the vorticity tensor and vector. Material derivative of deformation measures.
- 1.11 Streamlines and vortex-lines. Circulation. Vortex tubes.
- 1.12 Rigid motions superposed on a given motion of a deformable body. Objective

fields. Objective rates of vectors and second-order tensors. Interpretation of upper and lower convected rates.

1.13 Linearization of kinematical measures. Fréchet derivative. Infinitesimal strain and rotation.

2 BALANCE LAWS

- 2.1 The divergence theorem and some applications.
- 2.2 The transport theorem.
- 2.3 Mass and mass density. Traction and body forces. Torques.
- 2.4 Conservation of mass: Material, referential, and spatial integral statements. Point forms of conservation law.
- 2.5 Balance of linear momentum: Integral statements.
- 2.6 Balance of angular momentum: Integral statements.
- 2.7 Rigid body dynamics.
- 2.8 Applications of the balance laws in integral form (e.g.: material flowing through pipes).
- 2.9 The Cauchy stress tensor. Existence theorem. Properties of the stress tensor.
- 2.10 Cauchy's first and second laws.
- 2.11 Application: the expansion of the universe under Newtonian gravitation.
- 2.12 Kelvin's kinematical theorem and Helmholtz's vorticity theorems.
- 2.13 Piola transforms. Piola-Kirchhoff stress tensors. Referential form of Euler's laws and Cauchy's laws.
- 2.14 Invariance requirements under superposed rigid motions.
- 2.15 The work-energy theorem.
- 2.16 Remarks on thermodynamical concepts, and on the first and second laws of thermodynamics.
- 2.17 On the derivation of Euler's Laws from the energy equation.

3 CONSTITUTIVE RELATIONS

- 3.1 Concept of a *material* in continuum mechanics. Examples of constitutive relations. Solids and fluids. Constrained and unconstrained materials.
- 3.2 Local action, "equipresence," materials with memory.
- 3.3 Restrictions due to invariance requirements.
- 3.4 Material symmetry.
- 3.5 Ideal fluids. Incompressibility.
- 3.6 Viscous fluids. Linear viscous fluids. Navier-Stokes equations.
- 3.7 Elastic solids. Examples of simple deformations. Uniqueness and non-uniqueness of solutions to boundary value problems.
- 3.8 Linearly elastic solids. Bending and torsion of bars. Saint Venant's principle.
- 3.9 Linear viscoelasticity.

SELECTED REFERENCES

Continuum Mechanics

CM1. P.M. Naghdi. ME 185 (Classnotes). Berkeley, 1994.

CM2. P. Chadwick. *Continuum Mechanics*. Dover Publications, Inc., Mineola, New York, 1999.

CM3. P. Papadopoulos. ME 185 (Classnotes). Berkeley, 2008.

CM4. A.J.M. Spencer. Continuum Mechanics. Longman Group Limited, London, 1980.

CM5. W.M. Lai, D. Rubin, and E. Krempl. *Introduction to Continuum Mechanics*. Pergamon Press Inc., Oxford, 1979.

CM6. R.C. Batra. *Elements of Continuum Mechanics*. American Institute of Aeronautics and Astronautics, Inc., Reston, Virginia, 2006.

CM7. G.A. Holzapfel. *Nonlinear Solid Mechanics*. John Wiley & Sons, Ltd., Chichester, 2000.

CM8. O. Gonzalez & A.M. Stuart. *A First Course in Continuum Mechanics*. Cambridge University Press, Cambridge, 2008

CM9. M.E. Gurtin. *An Introduction to Continuum Mechanics*. Academic Press Inc., New York, 1981.

CM10. R. Abeyaratne. *Lecture Notes on the Mechanics of Elastic Solids* (2 Vols). <u>http://web.mit.edu/abeyaratne/Volumes/RCA_Vol_I_Math.pdf</u>, and <u>http://web.mit.edu/abeyaratne/Volumes/RCA_Vol_II.pdf</u>

CM11. A. Sommerfeld. *Mechanics of Deformable Bodies* (Lectures on Theoretical Physics, Vol. II). Academic Press, Inc., New York, 1950.

CM12. C. Truesdell & R.A. Toupin. The classical field theories. *Encyclopedia of Physics*, Vol. III/1 (Ed.: S. Flügge), pp. 226-858. Springer-Verlag, Berlin, 1960.

Mathematics

M1. R. Courant & F. John. *Introduction to Calculus and Analysis* (2 Vols). Springer-Verlag New York, Inc. 1989.

M2. H.M. Schey. *Div Grad Curl and All That*, 4th ed. W.W. Norton & Company, Inc., New York, 2005.

M3. P.R. Halmos. *Finite-Dimensional Vector Spaces*. Springer-Verlag New York, Inc., 1974.

Fluid Mechanics

FM1. L. Prandtl & O.G. Tietjens. *Fundamentals of Hydro- and Aerodynamics*. Dover Publications Inc., New York, 1957.

FM2. J. Lighthill. *An Informal Introduction to Theoretical Fluid Mechanics*. Oxford University Press, Oxford, 1996.

FM3. R.E. Meyer. *Introduction to Mathematical Fluid Dynamics*. Dover Publications, Inc., Mineola, New York, 2007.

FM4. R. von Mises & K.O. Friedrichs. *Fluid Dynamics*. Springer-Verlag, New York, 1971.

FM5. Th. von Kármán. *Aerodynamics*. Dover Publications, Inc., Mineola, New York, 2004.

FM6. A.J. Chorin & J.E. Marsden. *A Mathematical Introduction to Fluid Mechanics*. Springer-Verlag, New York, 1979.

FM5. G.K. Batchelor. *An Introduction to Fluid Dynamics*. Cambridge University Press, Cambridge, 1974.

FM6. H. Lamb. Hydrodynamics, 6th ed. Dover Publications Inc., New York, 1945.

Solid Mechanics

SM1. J. Bell. The experimental foundations of solid mechanics. *Encyclopedia of Physics*, Vol. VIa/1 (Eds.: S. Flügge and C. Truesdell), pp. 1-778. Springer-Verlag, Berlin, 1973.

SM2. R.W. Ogden. *Non-Linear Elastic Deformations*. Dover Publications, Inc., Mineola, New York, 1997.

SM3. R.W. Ogden. *Nonlinear Elasticity with Application to Material Modelling*. AMAS Lecture Notes, **6**. Institute of Fundamental Technological Research, Warsaw, 2003.

SM4. I.S. Sokolnikoff. *Mathematical Theory of Elasticity*, 2nd ed. McGraw-Hill Book Company, Inc., New York, 1956.

SM5. M.E. Gurtin. The linear theory of elasticity. *Encyclopedia of Physics*, Vol. VIa/2 (Eds.: S. Flügge & C. Truesdell), pp. 1-295. Springer-Verlag, Berlin, 1972.

SM6. A.E.H. Love. *A Treatise on the Mathematical Theory of Elasticity*, 4th ed. Dover Publications, Inc., New York, 1944.

History of the Classical Field Theories

H1. C. Truesdell. *Essays in the History of Mechanics*. Springer-Verlag New York, 1968.
H2. C. Truesdell. History of classical mechanics: Part I, to 1800. *Naturwissenschaften*, 63 (1976) 53-62.

H3. C. Truesdell. History of classical mechanics: Part II, the 19th and 20th centuries. *Naturwissenschaften*, **63** (1976) 119-130.

H4. H. Lamb. *The Evolution of Mathematical Physics* (Rouse Ball Lecture). Cambridge University Press, Cambridge, 1924.

H5. I.N. Sneddon. Book Review. *Bulletin of the American Mathematical Society*, **3**(1980) 870-878.

H6. A.E.H. Love. Historical Introduction. SM6.

GRADING SCHEME

Homework: 40% Midterm Exams: 20% Final Exam: 40%

19 August 2015