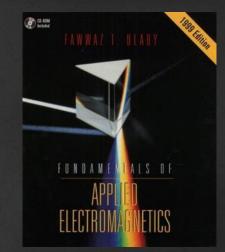

Electromagnetism

 Understanding optics in order to create useful devices

This class will cover:
 Transmission lines
 Maxwell equations
 Antennas



Martralle Equations $\nabla \cdot B = 0 \qquad \nabla \cdot D = \rho$ $\nabla \times \underline{E} = -\frac{\partial \underline{B}}{\partial t}$ $\nabla \times H = \frac{\partial D}{\partial r} + J$

Spring 2020 Course info

Instructor: Boubacar Kanté, <u>bkante@berkeley.edu</u>
TA: Zhetao Jia, <u>zhetao@berkeley.edu</u>
Lecture: Online (Zoom), Tu.Th. 9:30am-11am [PST]
Office Hours:

Professor Kanté: Online, Th. 11am-12pm [email me in advance] Discussion section:

Zhetao Jia: Online, Wed. 11am-12pm

Class Web Page:

https://piazza.com/berkeley/spring2021/ee117/info

Units: 4

Prerequisites: EECS 16B, MATH 53, and MATH 54; PHYSICS 7B or equivalent. Grading Policy: 10% homework, 40% quizzes, 10% project, 40% final exam

Text: *Fundamentals of Applied Electromagnetics, F. T. Ulaby,* or 5th or 6th edition

Syllabus

- 1 final exam
- 2 quizzes
- 1 group project.Presentation and report
- Weekly homework due on Thursdays, 6pm

Date	Lectures	
01/19	#01	Introduction to electromagnetism
01/21	#02	Traveling waves, phasors, and TLs
01/26	#03	Lossless TLs, standing waves, and input Z
01/28	#04	Z matching and power flow
02/02	#05	Lossy TLs and intro to Smith chart
02/04	#06	Vector analysis review
02/09	#07	Currents, charges, and Maxwell's equations
02/11	#08	Electric potential and Gauss's law
02/16	#09	Electrostatic and Poisson equation
02/18	Quiz 1	Quiz 1
02/23	#10	Electric properties of materials
02/25	#11	Electric boundary conditions
03/02	#12	Image method
03/04	#13	Magnetic forces and torques
03/09	#14	Bio-Savart's law
03/11	#15	Ampere's law and vector mag. potential
03/16	#16	Mag. materials and boundary conditions
03/18	#17	Inductance and magnetic energy
03/30	#18	Faraday's law, time varying Maxwell's
		equations, and retarded potentials
04/01	#19	Wave equation and plane waves propagation
04/06	#20	Snell's law, reflection, and transmission
04/08	Quiz 2	Quiz 2
03/13	#21	Waveguides
04/15	#22	Polarization and Jones Matrix
04/20	#23	Short dipole and antenna characteristics
04/22	#24	Antenna arrays and beam steering
04/27	Projects	Projects presentation (online)
04/29	Projects	Projects presentation (online)
04/30	Projects	Projects report due
05/12	Final	Final exam

Exams and Homework

Basis for grade

- [20%] Quiz 1: February 18, 2021
- [20%] Quiz 2: April 08, 2021
- [40%] Final exam: May 12, 2021
- [10%] Weekly homework: Due on Thursdays, 6:00pm
- [10%] Project: Presentation on April 27 & 29. Report due on April 30, 2021

Textbook and reference book

Textbook:

F.T. Ulaby, *Fundamentals of Applied Electromagnetics*, Prentice Hall, Fifth Edition, 2006 or Sixth Edition, 2010.

References:

- 1. M. N. O. Sadiku, *Elements of Electromagnetics*, Oxford University Press, 2001
- 2. H. H. Skilling, Fundamentals of Electric Waves, Wiley, 1948
- 3. R. Ramo, J.R. Whinnery and T. Van Duzer, *Fields and Waves in Communication Electronics*, Third Edition, Wiley, 1994
- 4. S. Schwarz, *Electromagnetics for Engineers*, Saunders 1990
- 5. J.A. Stratton, *Electromagnetic Theory*, Wiley, 2007

Homework

Problem sets (10% of final grade). <u>Due</u> every week <u>on Thursdays</u> due by 6pm PST [late homework will not be accepted for fairness].

Collaboration on problem sets is encouraged. However, you must write your own solutions and understand them.

Write down only relevant equations.

BOX your final answers.

Simplify your results as much as possible.

Two quizzes in "virtual" class (40% of final grade).

One cheat sheet, no collaboration, no computers (low-tech calculators allowed). This is difficult to control online. Tests will be designed accordingly.

> Quiz 1: February 18 Quiz 2: April. 08

Final project

Groups of 3-4 students (will depend on class size).

Chosen or assigned topic and do theory, simulations or "experiments".

Give a short (~20min) presentation online.

Code of conduct

- We are here to learn
 - be respectful
 - remember everyone is smart here but has a different background. All questions are welcome!
 - get engaged!
- No cheating
 - but work together
 - help each other on homework
- Give constructive feedback

Warnings

The class mostly follows the indicated textbook, but you are invited to consult other important references. There are many.

The class assumes very limited electromagnetic knowledge but will not be easy.

Some homework are long.

> I am here for your success!