Lect.	Date	Topic	$\mathbf{Reading}^*$	$\operatorname{Homework}^*$
1	8/26	Introduction	1.1-6	
2	8/28	Review of vector algebra	2.1-2, 2.4, 3.1C-F, 3.2A-B	2.2, 2.9
3	8/31	Forces and moments (1)	2.1-5	2.33, 2.75
4	9/2	Forces and moments (2)	3.1-2	3.4, 3.18
5	9/4	Equivalent force/moment systems	3.3-4	3.67, 3.71
6	9/9	Equilibrium (1)	4.1-3	4.6, 4.13
7	9/11	Equilibrium (2). Friction	4.1-3, 4.4	4.64, 4.86
8	9/14	2D trusses (method of joints)	6.1	6.10, 6.18
9	9/16	2D trusses (method of sections)	6.2	6.25, 6.43
10	9/18	Frames and machines	6.3-4	6.50, 6.68
11	9/21	Centroids. Distributed loading	5.1-4	5.50, 5.54
12	9/23	Internal forces and moments	3.1A, 12.1	12.4, 12.7
13	9/25	Shear and bending moment diagrams	12.2	12.40, 12.46
14	9/28	Stresses (1)	8.1-4	8.2, 8.5
15	9/30	Stresses (2)	8.1-4	8.33, 8.45
16	10/2	Deformation and strain	9.1A	9.3, 9.8
17	10/5	Intro to strain-stress relations	9.1B-D	9.11, 9.15
18	10/7	Deflection of bars	9.1F	9.24, 9.77
19	10/9	Static indeterminancy	9.2	9.30, 9.35
20	10/12	Torsion of circular shafts (1)	10.1	$\begin{array}{c} 10.6, 10.15 \\ (\mathrm{due} 10/30) \end{array}$
21	10/14	Torsion of circular shafts (2)	10.2-3	$\begin{array}{c} 10.32, 10.43 \\ (due \ 10/30) \end{array}$
22	10/16	Torsion of thin-walled shafts	Class notes	Assigned in class (due 10/30)
23	10/19	Review for Midterm Exam		
24	10/21	Midterm Exam (through Lect $#19$)		11 1 11 0
25	10/23	Bending of beams (1)	11.1-2, 7.1-2	$11.1, 11.9 \\ (due 11/6) \\ 11.17, 11.10$
26	10/26	Bending of beams (2)	11.1-2, 7.1-2	$11.17, 11.18 \\ (due 11/6) \\ 11.50, 11.87$
27	10/28	Bending with axial loads	11.4, 11.6	$11.50, 11.87 \\ (due 11/6) \\ 12.5 12.11$
28	10/30	Shear stresses in beams (1)	13.1-3	$\begin{array}{c} 13.5, 13.11 \\ (due 11/13) \end{array}$
29	11/2	Shear stresses in beams (2)	13.1-3	$\begin{array}{c} 13.25, 13.57 \\ (\mathrm{due} 11/13) \end{array}$
30	11/4	Deflection of beams	15.1-2	$\begin{array}{c} 15.12, 15.19 \\ (\text{due } 11/13) \end{array}$
31	11/6	Singularity functions	Class notes	$\begin{array}{c} \text{Assigned in class} \\ \text{(due } 11/13) \end{array}$

CE C30/ME C85 Introduction to Solid Mechanics Section 2, Course Information

* From "Statics and Mechanics of Materials", by F.P. Beer, E.R. Johnston et al, 2^{nd} edition.

Lect.	Date	Topic	${f Reading}^*$	Homework*
32	11/9	Buckling of columns (1)	16.1	16.1, 16.3
33	11/13	Buckling of columns (2)	16.1	16.54, 16.55
34	11/16	Stress transformation	14.1A	$\begin{array}{c} 14.4, 14.18 \\ (due 12/4) \end{array}$
35	11/18	Principal stresses and max in-plane shear	14.1B	$\begin{array}{c} 14.5, 14.12 \\ (due 12/4) \end{array}$
36	11/20	2D Mohr circles	14.2	$\begin{array}{c} 14.27, 14.43 \\ (due 12/4) \end{array}$
37	11/23	3D Mohr circles. Strain transformation	Class notes	$\begin{array}{c} \text{Assigned in class} \\ \text{(due } 12/4) \end{array}$
38	11/30	Generalized Hooke's law	9.4-7	9.57, 9.81 (due $12/7$)
39	12/2	Yield and fracture criteria	Class notes	$\begin{array}{c} \text{Assigned in class} \\ \text{(due } 12/7) \end{array}$
40	12/4	Other applications, extensions	Class notes	
41	12/7	Review		

Time and location: MWF 1–2pm, online (Zoom links available in the course bcourses page).

Instructor: Francisco Armero (armero@berkeley.edu)

Office hours: online through Zoom, time to be announced in bcourses.

GSIs: Jorge Archbold (jarchbold@berkeley.edu) and Zhijin Feng (zhijin_feng@berkeley.edu).

<u>Discussion sections</u>: online (Zoom links available in the course bcourses page).

<u>Office hours</u>: online through Zoom, time to be announced in bcourses.

Required textbook:

F.P. Beer, E.R. Johnston et al, "Statics and Mechanics of Materials", <u>2nd edition</u>, McGraw Hill.

Homework:

The syllabus above includes the reading and homework assignments of the course. The problems assigned in one week (that is, on Monday, Wednesday and Friday classes) are due the following Friday, at the **bcourses** page in a single PDF file. <u>No late homework will be accepted</u>. The solutions will be available at the course website by the following week. Please note the special arrangements for Lectures #20 to #22 before the midterm (with 6 problems due Friday 10/30), Lectures #25 to #27 (with 6 problems due Friday 11/6), Lectures #28 to #31 (with <u>8</u> problems due Friday 11/13), Lectures #34 to #37 (with <u>8</u> problems due Friday 12/4), and for the last week of the course (Lectures #38 and #39). Additional voluntary projects using MATLAB will be assigned during the course.

Grading system:

Homework 25%, midterm 25%, final 50%. (online midterm and final intended)