MSE 112 Corrosion Spring 2015

Instructor: Professor Thomas M. Devine

Office:	Room 224, Hearst Mining Building
Email:	devine@berkeley.edu

Lectures: Tu and Thurs 11:00am-12:30pm

Office Hrs: TBD

GSI:Brian PatrickEmail:Brian.n.patrick@gmail.comOffice Hrs:TBDDiscussion:TBD

Topic

Reading Assignment

1.	Electronic Structure of Atoms and Metals	Chapter 1
2.	Electronic Structure of H ₂ O and Aqueous Solutions	Chapter 2
3.	Structure of Interface between Metal and Aqueous Solution	Chapter 2
4.	Measurement of Interface Potential Difference	Chapter 2
5.	Reference Electrodes	Chapter 2
6.	Kinetics of Red-ox Reactions	Chapter 3
7.	Reduction Reactions that Accompany the Oxidation	Chapter 3
	of Metals in Aqueous Solutions	
8.	Measurement of Anodic and Cathodic Polarization Curves	Chapter 3
9.	Determination of Corrosion Potential and Corrosion Rate	Chapter 3
10.	Use of Polarization Curves to Analyze Corrosion	Chapter 4
	Phenomena; Influence of pH and P(O ₂)	
11.	Galvanic Corrosion	Chapter 4
12.	Cathodic Protection	Chapter 4
13.	Formation of Solid Corrosion Products	Chapter 5
14.	Pourbaix Diagrams	Chapter 5
15.	Corrosion Inhibitors	ZZhang at al.
16.	Passivity	Chapter 6 (Mott
		and Cabrerra)
17.	Identity of Iron's Passive Film	Chapter 6
		Nagayama/CohenI
18.	Properties of Iron's Passive Film	Nagayama/CohenI
	Ionic and Electronic Conductivities	Nagayama/CohenII
19.	Passive Film of Chromium	Bjornkvist et al.
		Okuyama et al
20.	Stainless Steels	Newman et al.
21.	Localized Corrosion – Crevice Corrosion	Chapter 7
22.	Localized Corrosion – Pitting Corrosion	Chapter 7

23.	Localized Corrosion – Intergranular Corrosion	Chapter 7
24.	Environmentally Assisted Cracking – Stress Corrosion	Chapter 8
	Cracking	
25.	Fracture Mechanics and Stress Corrosion Cracking	Chapter 8
26.	Environmentally Assisted Cracking – Hydrogen Assisted	Chapter 8
	Cracking	
27.	Environmentally Assisted Cracking – Corrosion Fatigue	Chapter 8
28.	Electrochemical Aspects of Batteries	Handout

Reading All reading assignments will be posted on b-space. Most of the reading assignments come from a set of notes prepared by TMD.

- Homeworks There will be one problem set per week covering Topic Nos. 1-14. For Topic Nos. 15-28 there will be approximately one problem set every two weeks.
- **Exams** There will be a Mid-term exam covering Topics 1-14 on Tuesday, March 17.

The Final Exam is scheduled on Thursday, May 14, 2014, 8:00am-11:00am

The mid-term exam and final exam must be taken on the scheduled times and dates. If dire circumstances (e.g., severe illness) prevent you from taking the Final Exam at the scheduled time/date you will receive an Incomplete for the course and will need to take the Final Exam that will be offered May 2016.

Grading The grade for the course will consist of the Final Exam (50%), the Midterm Exam (35%) and Homework (15%).