20.305 / 20.405 / 6.580 / 6.589 Principles of Synthetic Biology Course Syllabus

Instructors

Adam Arkin	U.C. Berkeley	<u>aparkin@lbl.gov</u>
Ron Weiss	MIT	<u>rweiss@mit.edu</u>

Teaching assistants

Michael Cronce	U.C. Berkeley	<u>cronce@berkeley.edu</u>
Richard Wu	MIT	<u>weidawu@mit.edu</u>
Katherine Ilia	MIT	<u>kilia@mit.edu</u>

Learning outcomes

Students will learn how to:

- Use modern DNA assembly techniques to build biological circuits
- Design advanced biological circuits with several levels of control:
 - Pre/post transcriptional regulation
 - **RNA-based regulation**
 - Protein-protein interactions
- Implement design principles taught in the course: Circuit logic and minimization

 - Hazard analysis
 - Input-output matching
- Write ordinary differential equation models to describe biological circuits
- Simulate biological circuit behavior using MATLAB

Grading

Grading will be based on:

- Five graded problem-sets	25%
- Two exams (midterm and final)	25% + 35%
- A final project (second half of the semester)	15%

Prerequisites

Students interesting in taking the class should have a basic understanding of:

- cell biology (e.g. internal structure of cells),
- molecular biology (e.g. enzymatic catalysis),
- genetics (e.g. structure of genes, transcription & translation)
- basic chemistry (e.g. writing reaction rates)

The class material is available on MITx using this link:

https://lms.mitx.mit.edu/courses/course-v1:MITx+20.305r_4+2019_Fall/course/