Math 121A: Mathematical Tools for the Physical Sciences, Spring 2015

Instructor: Nikhil Srivastava, email: firstname at math.berkeley.edu
Lectures: MWF 9-10am, Cory Hall 289.
Office Hours: Monday 2-3, Tuesday 9-10, and Thursday 11-1, Evans Hall 1035.
Text: Mary L. Boas, Mathematical Methods in the Physical Sciences, 3 e.
Grading: 30\% Homework, 30\% Midterms, 40\% Final. The lower midterm score will be replaced by the final exam score, if it helps.

Homework will be assigned every Friday and due the following Friday at the end of class, except for the week of $3 / 20$ (Midterm 2), when it will be due two days earlier on $3 / 18$. Solutions will be posted on this page each Friday or early Saturday, and late homework will not be accepted. The two lowest homework grades will be dropped.

Announcements

- (2/11) HW4 will be assigned early on Wednesday, $2 / 11$. It will *not* be collected, but solutions will be posted online on Monday, 2/16, so please do it before that. The material on HW4 will be included in the first midterm.
- $(2 / 12)$ There will be extra office hours on Tuesday, $2 / 17$, the day before the midterm.
- $(2 / 12)$ The midterm is in-class and closed book: no notes, textbooks, etc.
- $(2 / 14)$ Here is a sample midterm 1 , as well as solutions.
- $(2 / 14)$ Here are some extra practice problems for linear algebra: extra linear algebra problems.
- (2/20) New midterm grading policy: I will replace your lower midterm score with your final exam score, if it helps.
- $(2 / 21)$ Here are the solutions to midterm 1.
- (3/9) Office hours for the week of March 9-13 will be: Tu 8-9, We 2-3, Th 8-9 and 1230-130.
- (3/9) Reminder: HW8 will be assigned early (3/11) and collected early (3/18).
- $(3 / 15)$ Here is a sample midterm 2.
- $(3 / 17)$ Here are the sample midterm 2 solutions
- (3/18) Here is a handout describing what you can cite on the midterm while calculating limits of integrals. It also includes some extra problems for practice.
- $(4 / 3)$ Here are the midterm 2 solutions
- (4/14) HW10 is due on Monday, April 20.
- $(5 / 4)$ A sample final with practice problems is up
- (5/7) Sample final solutions.

Readings and Homework Schedule

\#	Date	Topic	Readings	HW	Notes
	Jan				

1	21	Intro to series	1.1-1.4		
2	$\begin{aligned} & \text { Jan } \\ & 23 \end{aligned}$	Tests for convergence	1.5-1.9	HW1 assigned	
3	$\begin{aligned} & \text { Jan } \\ & 26 \end{aligned}$	Power series	1.10-1.13		
4	$\begin{aligned} & \text { Jan } \\ & 28 \end{aligned}$	Taylor series, error terms	1.13-1.14		
5	$\begin{aligned} & \text { Jan } \\ & 30 \end{aligned}$	Asymptotic notation, applications of series	$\begin{aligned} & 1.15-1.16+ \\ & \text { Lecture notes } \end{aligned}$	HW2 assigned* HW1 Solutions posted	guest lecture by Marius Beceanu HW1 due
6	Feb	Diagonalization, decoupling principle	Lecture notes on diagonalization		
7	$\begin{aligned} & \text { Feb } \\ & 4 \end{aligned}$	More diagonalization, applications	3.11-3.12		
8	$\begin{aligned} & \text { Feb } \\ & 6 \end{aligned}$	Spectral theorem, inner product spaces	3.9, 3.14	HW3 assigned HW2 Solutions posted	HW2 due
9	Feb 9	Partial differentiation, chain rule	4.1-4.5		
10	$\begin{aligned} & \text { Feb } \\ & 11 \end{aligned}$	More chain rule, gradients, max/min problems	4.6-4.9 Lecture notes on chain rule	HW4 assigned	
11	$\begin{aligned} & \text { Feb } \\ & 13 \end{aligned}$	Max/min problems, Lagrange multipliers	4.9-4.10	HW3 Solutions posted	HW3 due
	Feb	No class		HW4 Solutions	

	16			posted	
12	$\begin{aligned} & \text { Feb } \\ & 18 \end{aligned}$	Midterm 1			
13	$\begin{aligned} & \text { Feb } \\ & 20 \end{aligned}$	Complex numbers	2.1-2.5	HW5 assigned	
14	$\begin{aligned} & \text { Feb } \\ & 23 \end{aligned}$	Complex series, the exponential function, Euler's formula	$\begin{aligned} & 2.6-2.15 \\ & \text { lecture notes } \end{aligned}$		
15	$\begin{aligned} & \text { Feb } \\ & 25 \end{aligned}$	Powers, roots, logarithm, trig functions	2.11-2.15		
16	$\begin{aligned} & \text { Feb } \\ & 27 \end{aligned}$	Complex differentiation, Cauchy-Riemann equations	14.1-14.2	HW6 assigned HW5 solutions posted	
17	Mar	Contour integration	14.3		
18	$\begin{aligned} & \text { Mar } \\ & 4 \end{aligned}$	Cauchy's integral formula and consequences	14.3		
19	$\begin{aligned} & \text { Mar } \\ & 6 \end{aligned}$	Laurent series	14.4	HW7 assigned HW6 solutions posted	
20	$\begin{aligned} & \text { Mar } \\ & 9 \end{aligned}$	Residue theorem	14.5-14.6 Lecture notes on residue thm and Laurent Series		
21	$\begin{aligned} & \text { Mar } \\ & 11 \end{aligned}$	Applications of residue calculus	14.7 Lecture notes on Jordan's lemma and PV	HW8 assigned	
22	$\begin{aligned} & \text { Mar } \\ & 13 \end{aligned}$	Applications of residue calculus	14.7	HW7 solutions posted Grader's	

				solutions	
23	$\begin{aligned} & \text { Mar } \\ & 16 \end{aligned}$	Integrating along a branch cut, Liouville's Thm, FTA	14.7		
24	$\begin{aligned} & \text { Mar } \\ & 18 \end{aligned}$	Summing series using residues, review		HW8 solutions posted	
25	$\begin{aligned} & \text { Mar } \\ & 20 \end{aligned}$	Midterm 2			
26	$\begin{aligned} & \text { Mar } \\ & 30 \end{aligned}$	Intro to Fourier series, heat equation	lecture notes, skim 7.1-7.7		
27	$\begin{aligned} & \text { Apr } \\ & 1 \end{aligned}$	Inner product space formulation, convergence in L2	lecture notes		
28	$\begin{aligned} & \text { Apr } \\ & 3 \end{aligned}$	More on L2 convergence		HW9 assigned	due April 14 at 5pm
29	$\begin{aligned} & \text { Apr } \\ & 6 \end{aligned}$	Pointwise convergence, differentiation, even/odd functions	lecture notes		
30	Apr 8	The Fourier transform, Gaussians	lecture notes		
31	Apr 10	Properties of Fourier transforms, convolution	lecture notes		guest lecture by Marius Beceanu
32	$\begin{aligned} & \text { Apr } \\ & 13 \end{aligned}$	More convolution, Poisson summation	lecture notes	HW10 assigned	Due April 20 at 5 pm
33	Apr 15	Delta functions	8.11		

34	$\begin{aligned} & \text { Apr } \\ & 17 \end{aligned}$	Shannon-Nyquist theorem, Isoperimetric inequality		HW9 solutions written by our grader	
35	$\begin{aligned} & \text { Apr } \\ & 20 \end{aligned}$	The Laplace Transform	8.8, 8.9	HW11 posted	Due April 27
36	$\begin{aligned} & \text { Apr } \\ & 22 \end{aligned}$	Inversion by convolution, the Bromwich Integral	8.9, 14.7 lecture notes		
37	$\begin{aligned} & \text { Apr } \\ & 24 \end{aligned}$	Green's functions	8.11, 8.12	HW12 posted	
38	$\begin{aligned} & \text { Apr } \\ & 27 \end{aligned}$	Green's functions, weak solutions	8.11, 8.12		
39	$\begin{aligned} & \text { Apr } \\ & 29 \end{aligned}$	Finish Green's functions	lecture notes	HW10 solutions posted HW11 solutions posted	
40	May 1	Review, evaluations		HW12 solutions written by our grader	

Course Outline:

1. Infinite Series (Chapter 1)
2. Linear Algebra (Chapter 3)
3. Partial Differentiation (Chapter 4)

Midterm 1, Wednesday 2/18
4. Complex Analysis (Chapters 2 \& 14)

Midterm 2, Friday 3/20
5. Fourier Series \& Transforms (Chapter 7)
6. Laplace Transforms (Chapter 8, end)
7. Calculus of Variations (Chapter 9)

Final Exam, Monday 5/11

