
Syllabus & Course Policies

Overview
The CS 61 series is an introduction to computer science, with particular emphasis on software

and on machines from a programmer's point of view.

1. CS 61A concentrates on the idea of abstraction, allowing the programmer to think in terms

appropriate to the problem rather than in low-level operations dictated by the computer

hardware.

2. CS 61B deals with the more advanced engineering aspects of software, such as

constructing and analyzing large programs.

3. CS 61C focuses on machines and how they execute programs.

In CS 61A, we are interested in teaching you about programming, not about how to use one

particular programming language. We consider a series of techniques for controlling program

complexity, such as functional programming, data abstraction, and object-oriented

programming.

CS 61A primarily uses the Python 3 programming language. Python is a popular language in both

industry and academia. It is also particularly well-suited to the task of exploring the topics

taught in this course. It is an open-source language developed by a large volunteer community

that prides itself on the diversity of its contributors. We will also use two other languages in

the latter half of the course: the Scheme programming language and the Structured Query

Language (SQL).

Mastery of a particular programming language is a very useful side e�ect of CS 61A. However,

our goal is not to dictate what language you use in your future endeavors. Instead, our hope is

that once you have learned the concepts involved in programming, you will �nd that picking up

a new programming language is but a few days' work.

A complete list of lecture topics, readings, and assignments appears in the daily schedule (/).

Prerequisites
Math 1A is listed as a corequisite for CS 61A. (That is, it may be taken concurrently.) Math 10A or

Math 16A are also �ne. It is possible to take CS 61A without knowing or learning calculus; all of

the old calculus-based examples have been removed over the years. However, taking calculus is

a great way to brush up on the arithmetic and algebra that appear regularly in CS 61A.

https://cs61a.org/

There are no formal programming-related prerequisites for CS 61A, but it's not the right �rst

course for all students. Many CS 61A students have had signi�cant prior programming

experience, including prior coursework. Some students take the course without any prior

programming experience, but they typically must work substantially harder to master the

material, perhaps simply because they have less practice working with programs. If you have

limited prior experience and you �nd it challenging to complete all of the required coursework

in the �rst three weeks, you should seriously consider taking another course �rst. You'll likely

have a better experience taking 61A later, and you won't fall behind in any meaningful way by

taking one of the alternatives below prior to taking 61A.

Alternatives
If you want to build programming experience before taking CS 61A, we recommend that you

take one of these courses �rst. You can always take CS 61A in a future semester.

CS 10
CS 10: The Beauty and Joy of Computing (http://cs10.org) provides a bird's-eye view of the �eld

of computer science. The course teaches students how to program using Snap (based on

Scratch), one of the friendliest programming languages ever invented, as well as Python, the

same language used in 61A. But the course is far more than just learning to program! You'll also

learn about some big ideas of computing, such as abstraction, design, recursion, concurrency,

simulations, and the limits of computation. You'll see beautiful applications of computing that

have changed the world, as well as talk about the history of computing and where it will go in

the future.

Data 8 and CS 88
Data 8: The Foundations of Data Science (http://data8.org/) is an introduction to data science

designed to be accessible and useful for all Berkeley students. This course was built for

students without prior programming experience. It teaches students to program in Python 3,

but covers a much smaller subset of the language than CS 61A. Most of the course focuses on

data processing and statistical techniques that are central to using computers to answer

questions about the world. The overlap between Data 8 and CS 61A is small (perhaps 25%), but

the programming skill you will acquire in Data 8 will help you maintain the faster pace of CS

61A.

CS 88: Computational Structures in Data Science (https://cs88-website.github.io/) is an

introduction to programming and computing that has more than 50% concept overlap with CS

61A. It is designed for students interested in data science who want to expand their knowledge

of programming and program structures beyond what is covered in Data 8. Students who

complete CS 88 can either proceed directly to CS 61B or subsequently take CS 61A, a path that

o�ers a substantial amount of review because of the high topic overlap between the courses.

Course Format

http://cs10.org/
http://data8.org/
https://cs88-website.github.io/

The course includes many events and opportunities for learning: lecture, lab, discussion, o�ce

hours, guerrilla sections, and group mentoring. We understand that everyone learns di�erently,

so not all of these events are required. However, it is recommended that you try everything out

to �gure out what combination of these events works best for you.

Lecture
There are three 50-minute lectures per week. Slides and videos will be posted before each

lecture. A screencast of the live lecture will be posted soon after each lecture occurs. This

course moves fast, and lecture is tightly coordinated with section. Please attend or watch each

lecture the day it is given and before you attend section.

Section
There are two sections each week: one lab and one discussion. These sections are run by an

amazing group of teaching assistants who have been carefully selected for their ability,

enthusiasm, and dedication to learning. Getting to know your TA is an excellent way to succeed

in this course. Participation in lab and discussion determines your participation score for the

course.

Sign up for a section using this form (http://links.cs61a.org/section-signup).

O�ce Hours
In o�ce hours, you can ask questions about the material, receive guidance on assignments, and

work with peers and course sta� in a small group setting. See the o�ce hour schedule (/o�ce-

hours.html) and come by; no appointments are needed.

Assignments
Each week, there will be problems assigned for you to work on, most of which will involve

writing and analyzing programs. These assignments come in three categories: lab exercises,

homework assignments, and projects.

Labs
Lab exercises are designed to introduce a new topic. You can complete and submit these during

the scheduled lab sections, or on your own time before the scheduled due date. Many students

�nd that attending lab is more useful than working on lab assignments independently.

Lab exercises are scored on correct completion. To receive credit, you must complete all of the

problems that are not marked as optional and pass all tests.

Homework
Homeworks are weekly assignments meant to help you apply the concepts learned in lecture

and section on more challenging problems. They will usually be released on Friday night and be

due the following Thursday night.

http://links.cs61a.org/section-signup
https://cs61a.org/office-hours.html

Collaboration
You are encouraged to discuss the homework with other students, as long as you write your

own code and submit your own work. Finding a study group is a great idea. The purpose of

homework is for you to learn the course material, not to prove that you already know it.

Therefore, you can expect to receive substantial assistance from the course sta�. You're

welcome to help others once you solve a problem.

If you are stuck on a problem, come get help instead of copying the answer from someone else

or the Internet; you'll still get credit and won't be �agged for cheating.

Partial Credit
There is partial credit, with every incorrect answer losing you one point on the homework (up

till 0). Usually, homeworks are out of 2. The lowest homework will be dropped from the

calculation of your grade in the course at the end of the semester

Homework Recovery Policy
You can recover one incorrect question per homework by going through the homework recovery

process:

1. Fill out a form declaring which question you want to recover by Friday 11:59PM, the

day after the homework is due

2. Go to lab and talk to your TA about that question in a group with other similarly situated

students. Your TA will record your recovery point and your grade will be updated

Projects
Projects are larger assignments intended to combine ideas from the course in interesting ways.

Some projects can be completed in pairs. When working in pairs, you should work together to

ensure that both of you understand the complete results. We recommend �nding a project

partner in your section. Your TA will help if you ask. You may also work alone on all projects,

although partners are recommended for the paired projects.

Projects are graded on both correctness and composition (composition.html).

Exams
Midterm 1 will likely be held 8pm-10pm Monday, February 10. This date is not yet con�rmed and

is subject to change. You are permitted to bring one double-sided, letter-sized, handwritten

sheets of notes.

Midterm 2 will be held 7pm-9pm Thursday, March 19. You are permitted to bring two double-

sided, letter-sized, handwritten sheets of notes. One of them can be your notes from Midterm 1.

Students who have a course con�ict with a midterm should notify the sta� before the

exam in question, and special arrangements will be made. Details of how to report an

exam con�ict will be announced shortly.

https://cs61a.org/articles/composition.html

The �nal exam will be held 11:30pm-2:30pm Tuesday, May 12. You are permitted to bring three

double-sided, letter-sized, handwritten sheets of notes. Two of them can be your notes from

Midterm 2.

If you have a direct con�ict with another �nal exam, we will allow you to take an

alternate �nal 3pm-6pm on Tuesday, May 12. We will not provide �nal alternates for any

other reason.

Resources

Textbook
The online textbook for the course is Composing Programs (http://composingprograms.com/),

which was created speci�cally for this course, based on the classic textbook Structure and

Interpretation of Computer Programs

(https://mitpress.mit.edu/sites/default/�les/sicp/index.html). Readings for each lecture appear

in the course schedule. We recommend that you complete the readings before attending

lecture.

Computing Resources
If you are enrolled in the class, you may request a CS 61A instructional account. This account

will allow you to use any EECS instructional lab computer in Soda or Cory Hall. You may use

any lab you wish, as long as there is no class using the space.

Labs are normally available for use at all times, but you need a card key for evening access. If

you are a Berkeley student, your student ID will automatically grant you access to the Soda

second �oor labs. Otherwise, you can �ll out an application from 387 Soda (the front desk).

Be respectful of the lab space. Please don't steal the chairs, and de�nitely do not eat or drink

in the lab. Don't unplug anything; unplugged computers make our hard-working instructional

computing team very sad. If you see someone disrupting the space, ask them to stop.

Grading
Your course grade is computed using a point system with a total of 300 points.

Midterm 1, worth 40 points.

Midterm 2, worth 25 points. (This was adjusted due to virus concerns)

The �nal exam, worth 100 points. (This was adjusted due to virus concerns)

Four projects, worth 100 points.

Homework, worth 20 points.

Lab, worth 10 points.

Discussion, worth 5 points.

There are a handful extra credit points available throughout the semester, perhaps around 10,

that are available to everyone.

http://composingprograms.com/
https://mitpress.mit.edu/sites/default/files/sicp/index.html

Each letter grade for the course corresponds to a range of scores:

A+ ≥ 300 A ≥ 285 A- ≥ 270
B+ ≥ 250 B ≥ 225 B- ≥ 205
C+ ≥ 195 C ≥ 185 C- ≥ 175
D+ ≥ 170 D ≥ 165 D- ≥ 160

Your �nal score will be rounded to the nearest integer before being converted to a letter grade.

0.5 rounds up to 1, but 0.49 rounds down to 0.

There is no curve; your grade will depend only on how well you do, and not on how well

everyone else does. Score thresholds are based on how students performed in previous

semesters. It is possible that the instructors will adjust the thresholds in your favor, for

example if exam scores are abnormally low, but we try to avoid that scenario. If all goes

according to plan, then these are the exact thresholds that will be used at the end of the

course to assign grades (contrary to popular rumor). In a typical semester, about 60% of

students taking the course for a letter grade will receive a B+ or higher.

Incomplete grades will be granted only for medical or personal emergencies that cause you to

miss the �nal or last part of the course, only for students who have completed the majority of

the coursework, and only if work up to the point of the emergency has been satisfactory.

Your two lowest homework scores will be dropped (policy updated 3/14).

Each lab that you complete is worth 1 point, and you can receive a maximum of 10 lab points.

There are going to be around 13 lab assignments, so you can skip a few.

Each discussion you attend is worth 1 point, excluding discussion 0 (during week 1). You can

receive a maximum of 5 discussion points. There are going to be around 12 discussions, so you

can skip many, but most students continue to attend discussion throughout the semester

because they �nd it useful.

Discussion Participation
Attending more than 5 discussions will contribute to recovery points on midterms. Attending at

least 10 discussions will give you the maximum amount of midterm recovery.

We calculate your midterm recovery using the following logic, where attendance is the number

of weeks that you attend discussion.

def exam_recovery(your_exam_score, attendance, max_exam_score, cap=10):
 half_score = max_exam_score / 2
 max_recovery = max(0, (half_score - your_exam_score) / 2)
 recovery_ratio = min(attendance, cap) / cap
 return max_recovery * recovery_ratio

According to this formula, if you receive more than half the available points on each midterm,

then you don't recover any points. If you score just below half the points, you will recover a few

points. If you score far below half the points, you will recover many points. The more weeks you

attend discussion, the more exam points will be recovered.

The purpose of this policy is to ensure that students who continue to invest time in the course

througout the semester are able to pass.

There are no recovery points available on the �nal exam.

Late Policy
If you cannot turn in an assignment on time, contact your TA and partner as early as possible.

Depending on the circumstance, we may grant extensions.

Labs: We rarely accept late lab submissions. There is no partial credit.

Homework: We rarely accept late homework submissions.

Projects: Submissions within 24 hours after the deadline will receive 75% of the earned

score. Submissions that are 24 hours or more after the deadline will receive 0 points.

Citizenship
For exceptionally rude or disrespectful behavior toward the course sta� or other students, your

�nal grade will be lowered by up to a full letter grade (e.g., from an A- to a B-) at the discretion

of the course instructor. You don't need to be concerned about this policy if you treat other

human beings with even a bare minimum of respect and consideration and do not engage in

behavior that is actively harmful to others.

Learning Cooperatively
With the obvious exception of exams, we encourage you to discuss course activities with your

friends and classmates as you are working on them. You will de�nitely learn more in this class

if you work with others than if you do not. Ask questions, answer questions, and share ideas

liberally.

You are also welcome to code collaboratively with others in your lab and solve lab problems in

small groups.

Learning cooperatively is di�erent from sharing answers. You shouldn't be showing your code to

other students or looking at others' code, except:

During lab, you can share all you want as long as you're all learning.

For a project that allows partners, you can share anything with your partner.

If you've �nished a problem already, you can look at others' code to help them �nish.

If you are helping another student, don't just tell them the answer; they will learn very little and

run into trouble on exams. Instead, try to guide them toward discovering the solution on their

own. Problem solving practice is the key to progress in computer science.

Since you're working collaboratively, keep your project partner and TA informed. If some

medical or personal emergency takes you away from the course for an extended period, or if

you decide to drop the course for any reason, please don't just disappear silently! You should

inform your project partner, so that nobody is depending on you to do something you can't

�nish.

Online Forum
If you have any questions, please post them to Piazza

(http://www.piazza.com/berkeley/spring2020/cs61a), the course discussion forum. Piazza allows

you to learn from questions your fellow students have asked. We encourage you to answer each

others' questions!

Piazza is the best and most reliable way to contact the course sta�. You are also welcome to

email cs61a+sp20@berkeley.edu, denero@berkeley.edu, or your TA directly.

Academic Honesty
Cooperation has a limit, and in CS 61A that limit is reading others' homework or project solution

to a problem before you solve that problem on your own. You are free to discuss the problems

with others beforehand, but you must write your own solutions. You may share code with your

project partner.

If you are unsure if what you are doing is cheating, please clarify with the instructor or TAs. The

following is a list of things you should NOT do. This list is not exhaustive, but covers most of

the big o�enses:

Do not copy code from any student who is not your partner.

Do not allow any student other than your partner to copy code from you.

Do not copy solutions from online sources such as Stack Over�ow, Pastebin, and public

repositories on GitHub.

Do not post your solutions publicly during or after the semester.

If you �nd a solution online, please submit a link to that solution anonymously

(https://goo.gl/forms/nL2yOj1Z81HcQYDi2). When we �nd an online solution, we ask the author

to remove it. We also record the solution and use it to check for copying. By reporting online

solutions, you help keep the course fair for everyone.

In summary, we expect you to hand in your own work, take your own tests, and complete your

own projects. The assignments and evaluations are structured to help you learn, which is why

you are here.

Rather than copying someone else's work, ask for help. You are not alone in this course! The

entire sta� is here to help you succeed. If you invest the time to learn the material and

complete the projects, you won't need to copy any answers.

A Parting Thought
Grades and penalties aren't the purpose of this course. We really just want you to learn. The

entire sta� is very excited to be teaching CS 61A this semester and we're looking forward to

meeting such a large and enthusiastic group of students. We want all of you to be successful

here. Welcome to CS 61A!

http://www.piazza.com/berkeley/spring2020/cs61a
https://goo.gl/forms/nL2yOj1Z81HcQYDi2

CS 61A (/)

Weekly Schedule (/weekly.html)

O�ce Hours (/o�ce-hours.html)

Sta� (/sta�.html)

https://cs61a.org/
https://cs61a.org/weekly.html
https://cs61a.org/office-hours.html
https://cs61a.org/staff.html

Resources (/resources.html)

Studying Guide (/articles/studying.html)

Debugging Guide (/articles/debugging.html)

Composition Guide (/articles/composition.html)

Policies (/articles/about.html)

Assignments (/articles/about.html#assignments)

Exams (/articles/about.html#exams)

Grading (/articles/about.html#grading)

https://cs61a.org/resources.html
https://cs61a.org/articles/studying.html
https://cs61a.org/articles/debugging.html
https://cs61a.org/articles/composition.html
https://cs61a.org/articles/about.html

