Chemistry 120A Syllabus, Spring 2020

Instructor:	Eric Neuscamman	eneuscamman@berkeley.edu	303 Gilman
GSIs:	Abdul Aldossary Rachel Clune Becky Hanscam Connie Robinson	aaldossary@berkeley.edu rclune4b@berkeley.edu bhanscam@berkeley.edu cdrobinson@berkeley.edu	
Grade Composition:	15% Problem Sets 45% Final Exam	20% Midterm 1 (in class, February 20% Midterm 2 (in class, April 6 th)	21 st)
	 Each grade component will be curved separately. Problem sets will be graded on a per-question, pass/no-pass basis in which full credit is given for if you made an effort, regardless of the correctness. Take advantage of this policy to work through the problems on your own and then learn from your mistakes! Late problem sets will receive no credit. If helpful, the final exam grade will replace 2/3 of the worst midterm grade. 		
Text:	Introduction to Quantum Mechanics by Griffiths As students often benefit from different perspectives on the material, copies of the following textbooks will be on reserve in the chemistry library: Introduction to Quantum Mechanics by Griffiths Molecular Quantum Mechanics by Atkins & Friedman Physical Chemistry: A Molecular Approach by McQuarrie and Simon		
Topics:	motivations for quantum mechanics mathematical foundations - vector spaces and inner products - linear and Hermitian operators - eigenvectors and eigenvalues - differential equations - equations without analytic solutions postulates of quantum mechanics the uncertainty principle particle wave duality 1-dimensional systems linear momentum and wave packets the quantum harmonic oscillator angular momentum the hydrogen atom the variational principle perturbation theory Fermi's golden rule spin and quantum statistics chemical bonds		