Course Outline: Math H53 Honors Multivariable Calculus University of California, Berkeley, Spring 2012

Course instructor:	Sean Fitzpatrick		
Office:	749 Evans		
Email address:	${\it sean@math.berkeley.edu}$		
Office hours:	Tuesday 5-6 pm, Thursday 1-3 pm (subject to change).		
Course website:	http://math.berkeley.edu/~sean/H53/		
Lectures:	Tuesday and Thursday, 3:30 - 5:00 pm in 106 Wheeler.		
Course GSI:	Benoît Jubin		
Office:	745 Evans		
Office hours:	TBA.		
Discussion:	Monday, Wednesday and Friday, 3:00 - 4:00 pm in 101 Wheeler.		

Course Description

This is a first course in multivariable calculus. The focus will be on functions of two and three variables, and using calculus to analyze the geometry of curves and surfaces in three-dimensional space. The official description from the Department of Mathematics is as follows:

Parametric equations and polar coordinates. Vectors in 2- and 3-dimensional Euclidean spaces. Partial derivatives. Multiple integrals. Vector Calculus. Theorems of Green, Gauss, and Stokes.

Prerequisite: Math 1B

Course textbook: Stewart, Multivariable Calculus, Early Transcendentals for UC Berkeley (Custom edition).

The text is available either for purchase or rent at the UC bookstore.

Students wanting a secondary resource may want to consider the "open source" textbook *Vector Calculus* by Michael Corral, which is available for free online at http://www.mecmath.net.

Course Objectives

Above all, in this course our goal will be to master the techniques of calculus in two and three variables, such as finding and analyzing critical points, and evaluating multiple integrals. More broadly, we will attempt to develop an underlying geometric intuition that will allow us to understand the problems on a qualitative (as well as quantitative) level.

Throughout the course we will emphasize mathematical writing and proof: we want to ensure that our solutions are presented in a manner that is clear, concise, and complete. Although we will officially cover the same material as Math 53 (non-honors), the coverage will at times be more theoretical and in-depth, with the goal of preparing you for upper-division mathematics courses.

Evaluation

Component	Number	Total value
Assignments	$5 \times 4\%$	20%
Midterm Tests	$2 \times 20\%$	40%
Final exam	1	40%

Your grade in this course will be determined as follows:

The grade on the final exam may replace the score on **one** of the midterm tests, in the event that the final exam score is higher, or a student is forced to miss one of the midterms with a valid reason.

Course policies

Lecture: Lectures will be used to present course material, highlight important points, and clarify areas of difficulty. Material to be covered will be announced in advance (see the tentative schedule below) and students will be assumed to have read the relevant chapters in the text in advance.

Discussion Section: Since this is an honors course, there are three hours of discussion per week, in addition to both instructor and GSI office hours. You are strongly encouraged to make use of the available contact time.

Quizzes: Each Friday (except for midterm test days) in discussion section there will be a short 15-20 minute quiz. The quizzes do not affect your grade - their purpose is to allow each student to monitor their own progress in the course. Quizzes will be peer-graded, based on the solutions provided by the GSI.

Homework: Suggested homework problems will be assigned at the end of every lecture. These will be problems from the sections of the course textbook to be covered in the *following* lecture; students are encouraged to attempt the problems in advance. Quiz questions will be chosen from the suggested problems, and similar problems may appear on the midterms and final exam.

Tests: There will be two 50 minute term tests, written in the discussion section. The test dates are as follows:

- Test #1: Monday, 13th February. Test covers Chapters 10, 12 and 13.1-13.2.
- Test #2: Friday, 23rd March. Test Covers Chapters 14 and 15.1-15.5.

Assignments: There will be five written assignments to be handed in for grading. Assignment problems will be more challenging than the routine exercises from the text. The assignments will be graded based on both the validity of the solutions and the quality of the writing - solutions should be clear and fully explained. (Assume that your target audience is a classmate, not the instructor.) Students should submit a good copy of their work for grading. It does not have to be typed, but should be neat and legible.

NOTE: It is acceptable, and in fact encouraged, for you to discuss the assignment problems with classmates. However, students **must** take care to avoid plagiarism. To avoid the temptation for outright copying, students are advised to write up their good copy on their own, and will be required to list any sources (persons or texts) used to compete the assignment.

Grading errors: Graded tests and assignments will be returned in lecture. If a student notices an error in the grading (such as an addition error) they must bring it to the attention of the instructor

at the end of class, before leaving the classroom. Subjective grading decisions will generally not be reviewed, and no grading errors will be considered once the returned work has left the classroom.

Special arrangements: If you are a student with a disability registered by the Disabled Student Services (DSS) on UCB campus and if you require special arrangements during exams or lectures, please inform the instructor as soon as possible.

January 17 th	Introduction, 10.5	Conic sections		
January 19 th	10.1, 10.2	Parametric curves		
January 24 th	10.3, 10.4	Polar coordinates		
January 26 th	12.1, 12.2	Coordinate systems, vectors		
January 31 st	12.3, 12.4	The dot and cross products		
February 2 nd	12.5, 12.6	Lines, planes and quadric surfaces		
February 7 th	13.1, 13.2	Calculus with vector-valued functions		
February 9 th	13.3, 13.4	Arc length, curvature, velocity and acceleration		
Monday, February 13 th : Midterm no. 1 (discussion section)				
February 14 th	14.1, 14.2	Functions of several variables; limits and continuity		
February 16 th	14.3	Partial derivatives		
February 21 st	14.4	Tangent planes and linear approximations; differentiability		
February 23 rd	14.5, 14.6	Chain rule, gradient, directional derivatives		
February 28 th	14.7, 14.8	Maxima, minima, and optimization		
March 1^{st}		Chapter 14 catch-up and review		
March 6 th	15.1, 15.2	Double integrals		
March $8^{\rm th}$	15.3	Double integrals, continued		
March 13 th	15.4, 15.5	Polar coordinates, applications		
March 15^{th}	15.6	Triple integrals		
March 20 th	15.7, 15.8	Triple integrals in cylindrical and spherical coordinates		
March 22 nd	15.9	Change of variables in multiple integrals		
Friday, March 23 rd : Midterm no. 2 (discussion section)				
March 26 th -30 th : Spring Break				
April 3 rd		Chapter 15 catch-up and review		
April 5^{th}	16.1, 16.5	Vector fields, Div, Grad and Curl		
April 10 th	16.2	Line integrals		
April $12^{\rm th}$	16.3, 16.4	Fundamental theorem for line integrals, Green's theorem		
April 17 th	16.6	Parametric surfaces		
April $19^{\rm th}$	16.7	Surface integrals		
April 24 th	16.8	Stokes' Theorem		
April 26 th	16.9	Divergence Theorem		
RRR Week: April 30 th - May 4 th				
Final Exam: Friday, May 11 th , 7-10 pm				

Tentative course schedule