CS 172: Computability and Complexity $$_{\rm Spring\ 2019}$$

Classes and Staff

Instructor: Amir Yehudayoff Email: amir.yehudayoff@gmail.com	Class: Mon & Wed, 2:30pm–4:00pm, Soda 306 Office hours: by appointment
TA: Jonathan Shafer Email: shaferjo@berkeley.edu	Discussion: Thu, 9:00am-10:00am & 10:00am-11:00am, Soda 320 Office hours: Wed, 5:00–6:00pm, Cory 212
Reader: Justin Yokota	

Email: jyokota@berkeley.edu

Please include the string "CS172" in the subject line when writing to us.

About this Course

This course is an introduction to the mathematical study of *computability*, which is concerned with the question "what can be computed?", and *complexity*, concerned with "what can be computed efficiently?".

Topics: Finite automata and regular languages. Turing machines. Decidability. Exponential and polynomial-time problems. Polynomial-time equivalence of all reasonable models of computation. NP-completeness. Selected topics in language theory, complexity and randomness.

Prerequisites: CS 170.

Website: piazza.com/berkeley/spring2019/cs172.

Textbook

Sipser, M. (2012). Introduction to the Theory of Computation (3rd Edition). Cengage Learning.

Note: this book is very good but also very expensive. If you can find a cheap used 1st or 2nd edition that's fine too.

Grading

Homework:	35~%
Midterm I:	20~%
Midterm II:	20~%
Final exam:	25~%

Homework

There will be weekly homework assignments. For further details please see the homework policy, to be posted on the website.

Calendar

The following is preliminary and very much subject to change.

Class	Date	Topic	Reading
1	Jan 23	Deterministic finite automata	Chapter 0; Section 1.1
2	Jan 28	Nondeterministic finite automata	Section 1.2
3	Jan 30	Equivalence of regular expression and finite automata	Section 1.3
4	Feb 4	Myhill-Nerode theorem	Handout 1
5	Feb 6	State minimization	Handout 1
6	Feb 11	Streaming algorithms	Handout 2
7	Feb 13	Turing machines	Chapter 3; Turing (1936)
	Feb 18	Presidents' day	
8	Feb 20	Variants of Turing machines, non-determinism, enumerators	Chapter 3
9	Feb 25	The Halting problem	Chapter 4
10	Feb 27	More decidability and undecidability results	Chapter 4
11	Mar 4	Midterm I	
12	Mar 6	Reducibility, Rice's theorem, and more undecidability results	Sections 5.1, 5.3; Handout 3
13	Mar 11	Gödel's incompleteness theorem	Handout 4
14	Mar 13	Kolmogorov complexity	Section 6.4; Handout 5
15	Mar 18	The classes P and NP	Sections 7.1, 7.2, 7.3
16	Mar 20	Boolean circuits	Section 9.3
	Mar 25	Spring break	
	Mar 27	Spring break	
17	Apr 1	NP-completeness of SAT	Sections 7.4, 9.3
18	Apr 3	More NP-complete problems	Handout 6
19	Apr 8	More NP-complete problems	Handout 6
20	Apr 10	NL-completeness	Sections 8.2, 8.5
21	Apr 15	Midterm II	
22	Apr 17	Savitch's theorem, NL=coNL	Sections 8.4; Handout 7
23	Apr 22	PSPACE-completeness, hierarchy theorem	Sections 8.3, 9.1; Handout 8
24	Apr 24	Advanced topics	
25	Apr 29	Advanced topics	
26	May 1	Advanced topics	
	May 14	Final exam	