Mechanics of Materials (CE130-II)

The First Mid-term Examination (Spring 2004)

Problem 1.

Consider the following statically indeterminate system (Fig. 1). Find the reactions forces R_1 and R_2 . Hint: The flexibility is defined as

$$f = \frac{L}{EA},\tag{1}$$

and relationship between internal force and elongation of a two force bar is $P = f\Delta$.

Figure 1: A Statically Indeterminate System

Problem 2

Consider the following two shaft system. Both shafts have circular cross section. Find the maximum shear stress in the system. Assuming $T_B = T$ and $T_C = 2T$. The radius of shaft AB is given as R = C; and the radius of shaft BC is given as R = 2C. Hints: torsion formula

$$\tau = \frac{T\rho}{I_{\rho}}$$
, for shafts with circular cross section , $I_{\rho} = \frac{\pi R^4}{2}$. (2)

Figure 2: Torsion of a two-shaft system

Problem 3

A planar circular three-hinge arch consists of two segments as shown in Fig. 3. Determine the reaction forces at A and B caused by the application of a vertical force P.

Problem 4

Consider a long (1000 meters in z-direction) concrete block with its both ends fixed. The cross section of the concrete block (section in x-y plane) is a 5 meter square. Suppose that in x-y plane,

Figure 3: A two-bar truss system

the block is subjected biaxial tensile stress load, namely, $\sigma_x = 5MP_a$ and $\sigma_y = 10MP_a$. This is a typical plane strain state. Let $E = 100MP_a$ and Poisson's ratio $\nu = 0.3$. Find σ_z , ϵ_x , and ϵ_y . Hint: The generalized Hooke's law is

$$\begin{array}{rcl} \epsilon_x & = & \frac{\sigma_x}{E} - \nu \frac{\sigma_y}{E} - \nu \frac{\sigma_z}{E} \\ \epsilon_y & = & -\nu \frac{\sigma_x}{E} + \frac{\sigma_y}{E} - \nu \frac{\sigma_z}{E} \\ \epsilon_z & = & -\nu \frac{\sigma_x}{E} - \nu \frac{\sigma_y}{E} + \frac{\sigma_z}{E} \end{array}$$

Problem 5.

Consider a rectangular block with the dimension $dx \times dy \times dz$. Uniform shear stress, τ_{xy} , is acting on the surfaces normal to (+/-) x-axis and uniform shear stress, τ_{yx} , is acting on the surfaces normal to (+/-) y-axis as shown in Figure 4. Show $\tau_{xy} = \tau_{yx}$. Hint: use moment equilibrium equation about the z-axis $(\sum M_z = 0)$.

Figure 4: Infinitesimal element in pure shear