Midterm Solutions-March 03, 2005

1. (15 pts) Find a matrix X which satisfies the given conditions if possible. If not, explain why not.
(a) $(3 \mathrm{pts}) 2 X+\left(\begin{array}{cc}3 & 2 \\ -1 & 4\end{array}\right)=\left(\begin{array}{ll}1 & 0 \\ 1 & 2\end{array}\right)$.

$$
\begin{aligned}
2 X & =\left(\begin{array}{ll}
1 & 0 \\
1 & 2
\end{array}\right)-\left(\begin{array}{cc}
3 & 2 \\
-1 & 4
\end{array}\right) \\
& =\binom{-2-2}{2-2} \\
X & =\binom{-1-1}{1-1}
\end{aligned}
$$

(b) $(3 \mathrm{pts}) X=\left(\begin{array}{cc}1 & 1 \\ 1 & -1\end{array}\right)\left(\begin{array}{ccc}3 & -2 & 0 \\ 2 & 5 & 1\end{array}\right)$.
$X=\left(\begin{array}{ccc}5 & 3 & 1 \\ 1 & -7 & -1\end{array}\right)$.
(c) $(3 \mathrm{pts}) X=\left(\begin{array}{ccc}3 & -2 & 0 \\ 2 & 5 & 1\end{array}\right)\left(\begin{array}{cc}1 & 1 \\ 1 & -1\end{array}\right)$.

This is undefined because the length of the rows of the first factor does not match the length of the columns of the second.
(d) $(2 \mathrm{pts}) X\left(\begin{array}{lll}1 & 2 & 4 \\ 1 & 1 & 3\end{array}\right)=\left(\begin{array}{ccc}1 & 2 & 4 \\ 0 & -1 & -1\end{array}\right)$, with X invertible.

The elementary matrix $X:=\left(\begin{array}{cc}1 & 0 \\ -1 & 1\end{array}\right)$ works here.
(e) (2 pts) $X\left(\begin{array}{lll}1 & 2 & 4 \\ 1 & 1 & 3\end{array}\right)=\left(\begin{array}{lll}1 & 1 & 3 \\ 1 & 2 & 4\end{array}\right)$, with X invertible.

The elementary matrix $\left(\begin{array}{cc}0 & 1 \\ 1 & 0\end{array}\right)$ works.
(f) $(2 \mathrm{pts}) X\left(\begin{array}{lll}1 & 2 & 4 \\ 1 & 1 & 3\end{array}\right)=\left(\begin{array}{lll}1 & 2 & 4 \\ 2 & 4 & 8\end{array}\right)$, with X invertible.

This is not possible since the rows spaces of the two matrices are not the same - they have different dimensions.
2. (15 pts) Let

$$
A:=\left(\begin{array}{cccccc}
1 & -2 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 2 & 0 & 0 & 0 \\
-1 & 2 & 0 & 0 & -1 & 1
\end{array}\right)
$$

Use Gauss elimination in the standard way to:
(a) (5 pts) Find a basis for the row space of A.
(b) (5 pts) Find a basis for the column space of A from among the columns of A.
(c) (5 pts) Find a basis for the null space of A.

Solution. A is row equivalent to the matrix

$$
B:=\left(\begin{array}{cccccc}
1 & -2 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

which is in row echelon form. Hence its nonzero rows,

$$
\left(\begin{array}{cccccc}
1 & -2 & 0 & 0 & 1 & 0
\end{array}\right),\left(\begin{array}{llllll}
0 & 0 & 1 & 0 & 0 & 0
\end{array}\right),\left(\begin{array}{llllll}
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right),
$$

form a basis for $R S(A)=R S(B)$. Furthermore, the columns of A corresponding to pivot columns of B for a basis for $C S(B)$:

$$
\left(\begin{array}{c}
1 \\
0 \\
0 \\
-1
\end{array}\right),\left(\begin{array}{c}
0 \\
0 \\
2, \\
0
\end{array}\right),\left(\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right)
$$

The free variables are x_{2}, x_{4}, x_{5}, and we have corresponding basis vectors for $N S(A)=N S(B)$:

$$
\mathbf{w}_{2}=\left(\begin{array}{c}
2 \\
1 \\
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right) \mathbf{w}_{4}=\left(\begin{array}{c}
0 \\
0 \\
0 \\
1 \\
0 \\
0 \\
0
\end{array}\right) \mathbf{w}_{5}=\left(\begin{array}{c}
-1 \\
0 \\
0 \\
0 \\
1 \\
0 \\
0
\end{array}\right)
$$

3. (20 pts) Let P_{3} denote the vector space of polynomials p of degree at most three. You may assume that this is a vector space of dimension 4.
(a) (5 pts) Prove that $\left(1, x^{2}, x^{3}-x\right)$ is a linearly independent sequence in P_{3}.
Suppose $a_{1} 1+a_{2} x^{2}+a_{3}\left(x^{3}-x\right)=0$. Then evaluating at $x=0$, we see that $a_{1}=0$. Evaluating at $x=1$, we see that $a_{2}=0$. Evaluating at $x=2$, we see that $a_{3} 6=0$, hence $a_{3}=0$ also.
(b) (5 pts) Prove that the set W of all $p \in P_{3}$ such that $p(1)=p(-1)$ is a linear subspace of P_{3} and that its dimension at most 3 . Hint: Use the fact that $W \neq P_{3}$.
Clearly the constant function 0 belongs to W, so it is not empty. If $p, q \in W$ and $a \in \mathbf{R}$, then

$$
(a p+q)(1)=a p(1)+q(1)=a p(-1)+q(-1)=(a p+q)(-1)
$$

Thus $a p+q \in W$, and W is a linear subspace. The polynomial $x \in P_{3}$ but is not in W, so $W \neq P_{3}$. Hence its dimension must be strictly smaller than 4 .
(c) (5 pts) Prove that $\left(1, x^{2}, x^{3}-x\right)$ is an ordered basis for W. Since S is linearly independent, the space it spans has dimension three. Since this space is contained in W, which has dimension at most three, $\operatorname{span}(S)=W$, so S is an ordered basis for W.
(d) $(5 \mathrm{pts})$ Find the coordinates of $(x-1)(x+1)$ with respect to this ordered basis.
$(x-1)(x+1)=x^{2}-1=-1 \cdot 1+1 \cdot x^{2}+0 \cdot\left(x^{3}-x\right)$. Hence its coordinates are $(-1,1,0)$.
4. $(10 \mathrm{pts})$ Let $A:=\left(\begin{array}{lll}1 & 1 & 2 \\ 0 & 1 & 3 \\ 0 & 0 & 1\end{array}\right)$.
(a) $(5 \mathrm{pts})$ Find A^{-1}.

$$
\begin{aligned}
\left(\begin{array}{lll|lll}
1 & 1 & 2 \\
0 & 1 & 3 \\
0 & 0 & 1 & \mid & \left.\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
\end{array}\right. & \rightarrow\left(\begin{array}{ccc|ccc}
1 & 0 & -1 & \begin{array}{cc}
1 & -1
\end{array} & 0 \\
0 & 1 & 3 \\
0 & 0 & 1 & \mid & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \\
& \rightarrow\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array} \left\lvert\, \begin{array}{ccc}
1 & -1 & 1 \\
0 & 1 & -3 \\
0 & 0 & 1
\end{array}\right.\right)
\end{aligned}
$$

$$
\text { Thus } A^{-1}=\left(\begin{array}{ccc}
1 & -1 & 1 \\
0 & 1 & -3 \\
0 & 0 & 1
\end{array}\right)
$$

(b) (5 pts) Write $\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right)$ as a linear combination of the columns of A.

$$
\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)=\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)-3\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right)+\left(\begin{array}{l}
2 \\
3 \\
1
\end{array}\right)
$$

5. (10 pts) Let A be a 7×13 matrix.
(a) (5 pts) What is the maximum possible dimension of the column space of A ? If this is achieved, what are the dimensions of the row and null spaces of A ? Explain. $C S(A) \subseteq \mathbf{R}^{7}$, so its maximum dimension is 7 , which can be achieved since there are $13 \geq 7$ columns. The dimension of the row space will then also be 7 , and that of the null space will be $13-7=6$.
(b) (5 pts) Answer the same questions for a 13×7 matrix.

In this case, the column space is a subspace of \mathbf{R}^{13} and is spanned by 7 vectors, so its dimension is again at most 7 . The dimension of the row space will still be 7 , and the dimension of the null space will be $7-7=0$.

