Midterm 2

April 8, 2008, 11:10-12:30

Your Name: \qquad

TA's Name: \qquad

Section time: \qquad

Directions: This is a closed book exam. No calculators, cell phones, pagers, mp3 players and other electronic devices are allowed.
Remember: Answers without explanations will not count. You should show your work. Solve each problem on its own page. If you need extra space you can use backs of the pages and the extra page attached to your exam paper, but make a note you did so.

Problem	Score
1	
2	
3	
4	
5	
6	
Total	
Grade	

(30) 1. Problem 1. Consider the symmetric matrix

$$
A=\left[\begin{array}{lll}
2 & 1 & 0 \\
1 & 1 & 1 \\
0 & 1 & 2
\end{array}\right]
$$

a) Calculate its characteristic polynomial and its eigenvalues.
b) Find an orthonormal base in \mathbb{R}^{3} consisting of eigenvectors of A.
c) Orthogonally diagonalize the matrix A.
(30) 2. Problem 2. a) Define an inner product in a vector space V.
b) For $p, q \in \mathbb{P}_{2}$ define $\langle p, q\rangle=\int_{0}^{1} x p(x) q(x) d x$. Show that this is an inner product.
c) Find an orthogonal basis in \mathbb{P}_{2} with respect to the above inner product.
(20) 3. Find a least squares solution of $A x=b$ where

$$
A=\left[\begin{array}{rr}
1 & 2 \\
-1 & 4 \\
1 & 2
\end{array}\right], \quad b=\left[\begin{array}{r}
3 \\
-1 \\
5
\end{array}\right]
$$

(20) 4. Mark each statement True or False. Justify your answers.
a) Each eigenvalue of a square matrix A is also an eigenvalue of A^{2}.
b) Let A, B be invertible $n \times n$ matrices. If $A B$ is diagonalizable then $B A$ is diagonalizable.
(20) 5. Let $A=\left[\begin{array}{rr}1 & 1 \\ -2 & 3\end{array}\right]$. Find an invertible matrix P and a matrix C of the form $C=\left[\begin{array}{cc}a & -b \\ b & a\end{array}\right]$ so that $A=P C P^{-1}$.
(20) 6. Mark each statement True or False. Justify your answers.
a) Let $\left\{v_{1}, \cdots, v_{p}\right\}$ be an orthonormal set in \mathbb{R}^{n}. If $x=c_{1} v_{1}+\cdots+c_{n} v_{n}$ then $\|x\|^{2}=c_{1}^{2}+\cdots+c_{n}^{2}$.
b) Any orthogonal matrix is invertible.

