Name: \qquad

Linear Algebra and Differential Equations Final

Robert F. Coleman

Do problem 1 and eight of the remaining nine problems. Put your answers, as well as your name, on the exam. Problem 1 is worth 40 points, problems 2-10 are each worth 20 points. Mark below, each problem you want graded. You may use any and only those results discussed in class or in the text.

Total

1. True/False If false, give a counterexample. If true just say true.
(i) Suppose M is an $n \times n$ matrix such that $\operatorname{det}(M) \neq 0$. Then the rows of M form a basis of \mathbf{R}^{n}.
(ii) The vectors in $\mathbf{R}^{3},(1,1,1),(1,2,4),(1,3,9),(1,4,16)$ are independant.
(iii) There are infinitely many solutions (x, y) to the system of equations: $2 x+y=3$, $-3 x+y=-2$ and $4 x+y=5$.
(iv) If M and P are $n \times n$ matrices and P is invertible then $\operatorname{rank}(M)=\operatorname{rank}(M P)$.
(v) If the characteristic polynomial of a square matrix has multiple roots, the matrix is not diagonalizable.
(vi) If A and B commute and v is an eigenvector for both A and B, then v is an eigenvector for $A B$.
(vii) If A is invertible, then $A B$ is invertible if and only if $\operatorname{det}(B) \neq 0$.
(viii) If A has an orthonormal eigenbasis, then A is symmetric.
(ix) Any set of three pairwise independant vectors in \mathbf{R}^{3} is a basis for \mathbf{R}^{3}.
(x) If a real matrix M has no real eigenvalues, then the equation $v^{\prime}=M v$ has no real valued solutions.
(xi) Suppose V is an n dimensional vector space with an inner product. Then the maximal number of distinct pairwise orthogonal subspaces of V is n.
(xii) The determinant of an $n \times n(n>0)$ square matrix M is zero if and only if one of the rows of M is a linear combination of the other rows.
(xiii) The product of two diagonalizable matrices is diagonalizable.
(xiv) The sum of two projections is a projection.
(xv) Similar matrices have the same eigenvalues.
(xvi) If M is a square matrix in row-echelon form with a 1 in each row, then M is invertible.
(xvii) If p and q are continuous functions on $[0,1]$, the set of functions $f \in \mathcal{C}^{2}(I)$ such that $f^{\prime \prime}+p f^{\prime}+q f=0$ is a vector space.
(xviii) If M is a constant 2×2 matrix with no real eigenvalues, the solutions of $v^{\prime}=M v$ are bounded.
(xix) If y_{1} and y_{2} consitute a pair of fundamental solutions of $y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0$ on I, they can have no common zeroes.
(xx) The operator on differentiable functions $f \mapsto\left(f^{\prime}\right)^{2}$ is linear.
2. Let A be an $n \times n$ matrix. Define a linear $\operatorname{map} d_{A}$ from \mathbf{M}_{n} to itself as follows:

$$
d_{A}(X)=A X-X A
$$

Show if A is symmetric the rank of d_{A} is at most $n^{2}-n$.
Solution. $\operatorname{dim} \mathbf{M}_{n}=n^{2}$ so by the rank plus nullity theorem it suffices to show $\operatorname{dim} \operatorname{ker} d_{A} \geq n$. First note if A and X are diagonal, $X \in \operatorname{ker} d_{A}$. Also, the set D of diagonal matrices is a subspace of \mathbf{M}_{n} of dimension n which does it in this case.

If A is symmetric there exists an invertible matrix M so that $M^{-1} A M$ is diagonal and so

$$
0=\left(M^{-1} A M\right) X-X\left(M^{-1} A M\right)=M^{-1}\left(A\left(M X M^{-1}\right)-\left(M X M^{-1}\right) A\right) M
$$

Thus $A\left(M X M^{-1}\right)-\left(M X M^{-1}\right) A=0$ and $M A M^{-1}=0$. Since $M D M^{-1}$ is a subspace of dimennsion n, we get what we want.
3. Show if Q is a quadratic form on $\mathbf{R}^{n}, Q(v)=\langle v, v\rangle$ for an inner product \langle,$\rangle if$ and only if the eigenvalues of the corresponding matrix are positive.

Solution. Let M_{Q} be the matrix corresponnding to Q so that

$$
Q(v)=M_{Q} v \cdot v
$$

We know that there is an orthonormal M_{Q}-eigenbasis w_{1}, \ldots, w_{n} of \mathbf{R}^{n}. Suppose $M_{Q} w_{i}=\lambda_{i} w_{i}, \lambda_{i} \in \mathbf{R}$. Then,

$$
Q\left(a_{1} w_{1}+\cdots+a_{n} w_{n}\right)=\lambda_{1} a_{1}^{2}+\cdots+\lambda_{n} a_{n}^{2}
$$

Thus if $\langle v, w\rangle=M_{Q} v \cdot w,\langle v, v\rangle>0$ for all $v_{\neq 0}$ if and only if all the λ_{i} are positive.
4. Determine whether or not

$$
\left(\begin{array}{cccc}
2 & -1 & 1 & 0 \\
0 & 1 & 1 & 2 \\
-1 & 2 & 1 & 3 \\
3 & 1 & 4 & 5
\end{array}\right)
$$

is invertible. If so compute the inverse, if not, compute the rank.
5. Suppose $B=\left(\begin{array}{lll}1 & 2 & 3 \\ 0 & 1 & 2 \\ 0 & 0 & 1\end{array}\right)$ and $C=\left(\begin{array}{rrr}1 & -2 & 1 \\ 0 & 1 & -2 \\ 0 & 0 & 1\end{array}\right)$ and

$$
M=B\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 3
\end{array}\right) C
$$

Compute $B C$ and use this to find the solutions $v(T)$ of the equation

$$
v^{\prime}=M v
$$

such that $v(0)=(1,0,0)^{T}$.
6. Let A be a 2×2 matrix. Suppose $A^{n}=0$ for some integer n, show $A^{2}=0$.
7.. Solve the heat equations on $[0,1]$;
$u_{t}=u_{x x}$
$w_{t}=w_{x x}$
(ii) $\quad w(0, t)=0 \quad w(1, t)=1$. $w(x, 0)=x$.

What equation with what initial conditions does $a u+b w$ satisfy where a and b are scalars.
8. Let A be a diagonalizable $n \times n$ matrix with eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$. Suppose that $\left|\lambda_{1}\right|<1$ for every i. Prove that as $m \mapsto \infty$, all the entries of A^{m} approach zero.
9. Find a 2×2 constant matrix M over \mathbf{R} such that

$$
\left\{\binom{1}{2} e^{-x}, \quad\binom{0}{1} e^{4 x}\right\}
$$

is a set of fundamental solutions of the equation $v^{\prime}=M v$.
10. Suppose A and B are commuting $n \times n$ matrices. (a) Show that if v is an eigenvector of B with eigenvalue b, so is $A v$. (b) Show that if B is diagonalizable and the diagonal entries are distinct then A is diagonalizable also.

Solution.
(a)

$$
B(A v)=(B A) v=(A B) v=A(B v)=A(b v)=b(A v)
$$

(b) The hypotheses imply, there is a basis v_{1}, \ldots, v_{n} of \mathbf{R}^{n} such that $B v_{i}=\lambda_{i} v_{i}$ and $\lambda_{i} \neq \lambda_{j}$ if $i \neq j$. It follows, in particular, that the set V_{i} of vectors v such that $B v=\lambda_{i} v$ is a one dimensional subspace of \mathbf{R}^{n} spanned by v_{i}.
It follows from (a) that $A v_{i} \in V_{i}$ and so there exist scalars $\mu_{i} \in \mathbf{R}$ so that $A v_{i}=\mu_{i} v_{i}$. So the matrix of A with respect to this basis is

$$
\left(\begin{array}{ccc}
\mu_{1} & \cdots & 0 \\
\vdots & \ddots & \vdots \\
0 & \cdots & \mu_{n}
\end{array}\right)
$$

