Mathematics 1B. Fall Semester 2006

Midterm 2 Solutions

(20) 1. Determine the interval of convergence of the following series. Do they converge at endpoints?

$$
\text { a) } \quad \sum_{n=1}^{\infty} \frac{(x-1)^{2 n}}{\sqrt{n} 4^{n}}
$$

Solution: Using the ratio test we compute

$$
\lim _{n \rightarrow \infty} \frac{\frac{(x-1)^{2(n+1)}}{\sqrt{n+1} 4^{n+1}}}{\frac{(x-1)^{2 n}}{\sqrt{n} 4^{n}}}=\lim _{n \rightarrow \infty} \frac{(x-1)^{2}}{4} \frac{\sqrt{n}}{\sqrt{n+1}}=\frac{(x-1)^{2}}{4}
$$

The limit is less than 1 if $|x-1|<2$. Hence the radius of convergence is $R=2$. At the endpoints we have $x-1= \pm 2$ and the series becomes

$$
\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}
$$

which is a divergent p-series. Thus the interval of convergence is $(-1,3)$.

$$
\text { b) } \quad \sum_{n=2}^{\infty} \ln \left(\frac{n+1}{n-1}\right) x^{n}
$$

Solution: Using the Taylor expansion for $\ln (1+x)$ we write

$$
\ln \left(\frac{n+1}{n-1}\right)=\ln \left(1+\frac{2}{n-1}\right)=\frac{2}{n-1}-\frac{2}{(n-1)^{2}}+\cdots
$$

Then for the ratio test we compute

$$
\lim _{n \rightarrow \infty} \frac{\ln \left(\frac{n+2}{n}\right) x^{n+1}}{\ln \left(\frac{n+1}{n-1}\right) x^{n}}=x \lim _{n \rightarrow \infty} \frac{\frac{2}{n}-\frac{2}{n^{2}}+\cdots}{\frac{2}{n-1}-\frac{2}{(n-1)^{2}}+\cdots}=x
$$

The limit is less than 1 if $|x|<1$. Hence the radius of convergence is $R=1$. At the endpoint $x=-1$ we obtain the alternating series

$$
\sum_{n=2}^{\infty}(-1)^{n} \ln \left(1+\frac{2}{n-1}\right)
$$

Due to the expansion above we have $\ln \left(\frac{n+1}{n-1}\right) \searrow 0$ as $n \rightarrow \infty$ therefore the series converges by the alternating test.
At the endpoint $x=1$ we obtain the series

$$
\sum_{n=2}^{\infty} \ln \left(1+\frac{2}{n-1}\right)
$$

Due to the expansion above this is comparable to the harmonic series $\sum_{n=2}^{\infty} \frac{2}{n-1}$ which diverges. Thus the interval of convergence is $[-1,1)$.
(20) 2. Find the Maclaurin series expansion of the following functions. Determine where the expansions are valid (i.e. for what values of x they converge).

$$
\text { a) } \quad f(x)=\frac{x}{x^{2}+x-2}
$$

Solution: Using partial fractions we write

$$
f(x)=\frac{x}{x^{2}+x-2}=\frac{x}{(x+2)(x-1)}=\frac{2}{3(x+2)}+\frac{1}{3(x-1)}=\frac{1}{3}\left(\frac{1}{1+\frac{x}{2}}-\frac{1}{1-x}\right)
$$

Then using the geometric series we write

$$
\frac{1}{1-x}=\sum_{n=0}^{\infty} x^{n}, \quad \frac{1}{1+\frac{x}{2}}=\sum_{n=0}^{\infty}(-1)^{n} 2^{-n} x^{n}
$$

Summing up we obtain

$$
f(x)=\sum_{n=0}^{\infty} \frac{1}{3}\left((-1)^{n} 2^{-n}-1\right) x^{n}
$$

The radius of convergence is 1 for the first term and 2 for the second, so after adding them up we obtain $R=1$. At the endpoints $x= \pm 1$ the series diverges since the general term does not go to 0 . Hence the interval of convergence is $(-1,1)$.

$$
\text { b) } \quad f(x)=\sqrt{1+x^{2}}
$$

Solution: We use the binomial series

$$
\sqrt{1+x}=\sum_{n=0}^{\infty}\binom{\frac{1}{2}}{n} x^{n}=\sum_{n=0}^{\infty} \frac{\frac{1}{2}\left(\frac{1}{2}-1\right) \cdots\left(\frac{1}{2}-n+1\right)}{n!} x^{n}=1+\frac{x}{2}+\sum_{n=2}^{\infty}(-1)^{n-1} \frac{1 \cdot 3 \cdots(2 n-3)}{2^{n} n!} x^{n}
$$

and replace x by x^{2} to obtain

$$
\sqrt{1+x^{2}}=1+\frac{x^{2}}{2}+\sum_{n=2}^{\infty}(-1)^{n-1} \frac{1 \cdot 3 \cdots(2 n-3)}{2^{n} n!} x^{2 n}
$$

The binomial series converges for $|x|<1$ therefore our series also converges for $|x|<1$. This can also be verified directly using the ratio test. At the endpoints $x= \pm 1$ we obtain the alternating series

$$
\sum_{n=0}^{\infty}(-1)^{n-1} a_{n}, \quad a_{n}=\frac{1 \cdot 3 \cdots(2 n-3)}{2^{n} n!}
$$

It is easily verified that the sequence a_{n} is decreasing, but harder to show that it converges to 0 . We have

$$
a_{n}=\frac{1}{2} \frac{3}{4} \cdots \frac{2 n-3}{2 n-2} \cdot \frac{1}{2 n}<\frac{1}{2 n} \rightarrow 0
$$

This implies that $a_{n} \rightarrow 0$. Then the interval of convergence is $[-1,1]$.
3. a) Find the third order Taylor polynomial of $\tan x$ at $\pi / 4$.

Solution: For $f(x)=\tan x$ we compute

$$
f^{\prime}(x)=\sec ^{2} x, \quad f^{\prime \prime}(x)=2 \sec ^{2} x \tan x, \quad f^{\prime \prime \prime}(x)=4 \sec ^{2} x \tan ^{2} x+2 \sec ^{4} x
$$

We evaluate them at $\pi / 4$ using $\tan \pi / 4=1, \sec \pi / 4=\sqrt{2}$. This gives

$$
f(\pi / 4)=1, \quad f^{\prime}(\pi / 4)=2, \quad f^{\prime \prime}(\pi / 4)=4, \quad f^{\prime \prime \prime}(\pi / 4)=16
$$

Then the third order Taylor polynomial of $\tan x$ at $\pi / 4$ is

$$
P_{3}(x)=1+2(x-\pi / 4)+2(x-\pi / 4)^{2}+\frac{8}{3}(x-\pi / 4)^{3}
$$

b) Find the Maclaurin series for a function f which solves the differential equation

$$
f^{\prime \prime}(x)=x f(x), \quad f(0)=1, f^{\prime}(0)=0
$$

What is the radius of convergence?
Solution: If $f(x)=\sum_{n=0}^{\infty} a_{n} x^{n}$ then $f^{\prime}(x)=\sum_{n=1}^{\infty} n a_{n} x^{n-1}$ therefore

$$
f^{\prime}(x)=\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}=1 \cdot 2 a_{2}+2 \cdot 3 a_{3} x+3 \cdot 4 a_{4} x^{2}+\cdots+(n+2)(n+1) a_{n+2} x^{n}+\cdots
$$

On the other hand

$$
x f(x)=\sum_{n=0}^{\infty} a_{n} x^{n+1}=a_{0} x+a_{1} x^{2}+\cdots+a_{n-1} x^{n}+\cdots
$$

Identifying the coefficients in the two power series we obtain $a_{2}=0$ and

$$
(n+2)(n+1) a_{n+2}=a_{n-1}, \quad n \geq 1
$$

From the initial data we also know that $a_{0}=1, a_{1}=0$. Then we can iteratively compute the coefficients a_{n} (e.g. we use the above formula with $n=1$ to compute a_{3}, etc.):

$$
1,0,0, \frac{1}{2 \cdot 3}, 0,0, \frac{1}{2 \cdot 3 \cdot 5 \cdot 6}, 0,0, \frac{1}{2 \cdot 3 \cdot 5 \cdot 6 \cdot 8 \cdot 9}, \cdots
$$

This gives the Maclaurin series

$$
f(x)=\sum_{n=0}^{\infty} \frac{1}{2 \cdot 3 \cdot 5 \cdot 6 \cdots(3 n-1) 3 n} x^{3 n}
$$

To compute the radius of convergence we use the ratio test. We have

$$
\lim _{n \rightarrow \infty} \frac{\frac{x^{3 n+3}}{\frac{2 \cdot 3 \cdot 5 \cdot 6 \cdots(3 n-1) 3 n(3 n+2)(3 n+3)}{x^{3 n}}}}{\frac{2 \cdot 3 \cdot 5 \cdot 6 \cdots(3 n-1) 3 n}{}}=\lim _{n \rightarrow \infty} \frac{x^{3}}{(3 n+2)(3 n+3)}=0
$$

Hence the series converges for all x.
(20) 4. Sketch the direction field of

$$
y^{\prime}=y^{3}-y
$$

and determine the equilibrium solutions. Are they stable?
Solution: a) We check the sign of y^{\prime} :

y	-1	0	1
$y^{\prime}-0+0$	$0+$		

The equilibrium solutions are $y= \pm 1$ and $y=0$.
b) We sketch the direction field (see the picture in problem 1b, Section 9.2 but with the x axis reversed)
c) Sketch a few solutions which follow the direction field. The solution $y=0$ is stable, but $y= \pm 1$ are not.
5. Solve the initial value problems

$$
\text { a) } \quad \frac{d x}{d t}=2 t\left(1+x^{2}\right), \quad x(0)=0
$$

Solution: This is a separable equation. We compute

$$
\frac{d x}{1+x^{2}}=2 t d t, \quad \int \frac{d x}{1+x^{2}}=\int 2 t d t+C
$$

which gives

$$
\tan ^{-1} x=t^{2}+C
$$

Using the initial data we obtain $C=0$, therefore the solution is

$$
x(t)=\tan t^{2}
$$

$$
\text { b) } \quad \frac{d x}{d t}=x+\sin t, \quad x(0)=1
$$

This is a linear equation, which we rewrite as

$$
x^{\prime}-x=\sin t
$$

The integrating factor is e^{-t}. Multiplying by it in both sides gives

$$
e^{-t} x^{\prime}-e^{-t} x=e^{-t} \sin t \quad \Leftrightarrow \quad\left(e^{-t} x\right)^{\prime}=e^{-t} \sin t
$$

Hence integrating by parts we obtain

$$
e^{-t} x(t)=\int e^{-t} \sin t d t=-\frac{1}{2} e^{-t}(\sin t+\cos t)+C
$$

so the general solution is

$$
x(t)=-\frac{1}{2}(\sin t+\cos t)+C e^{t}
$$

Using the initial data in this equation gives $C=\frac{3}{2}$, therefore

$$
x(t)=-\frac{1}{2}(\sin t+\cos t)+\frac{3}{2} e^{t}
$$

