Final

Write your name and SID on the front of your blue book. All answers and work should also be written in your blue book. You must **JUSTIFY** your answers, so show your work. Partial credit will be awarded even if answers are incorrect. No notes, books, or calculators. Good luck!

1. (15 pts.) The matrix

$$A = \left(\begin{array}{rrrr} 1 & 0 & 0 & i \\ 0 & 1 & -i & 0 \\ 0 & -i & 1 & 0 \\ i & 0 & 0 & 1 \end{array}\right)$$

has characteristic polynomial $f(t) = (t - \lambda_1)^2 (t - \lambda_2)^2$, where $\lambda_1 = 1 + i$ and $\lambda_2 = 1 - i$. a. (5 pts.) Fact: $A^* = -\frac{1}{2}A^3$. Use this to prove that A is normal.

SOLUTION: $A^*A = -1/2A^3A = A(-1/2A^3) = AA^*$.

b. (5 pts.) From a. it follows that A has a spectral decomposition: $A = \lambda_1 T_1 + \lambda_2 T_2$. Compute T_1 and T_2 by finding polynomials $g_i(t)$ such that $g_i(A) = T_i$. You must compute the g_i and T_i for full credit.

SOLUTION: $g_1(t) = (t - \lambda_2)/(\lambda_1 - \lambda_2) = \frac{1}{2i}(t - (1 + i))$ and similarly $g_2(t) = \frac{-1}{2i}(t - (1 - i))$. You can now easily compute $T_i = g_i(A)$.

c. (5 pts.) Using b., find a linear polynomial g(t) = ct + d such that $g(A) = A^*$.

SOLUTION: $g(t) = \overline{\lambda_1}g_1(t) + \overline{\lambda_2}g_2(t) = -t + 2$. 2. (15 pts.) The matrices

$$A = \begin{pmatrix} 2 & 0 & -1 \\ 0 & 2 & 1 \\ -1 & -1 & 1 \end{pmatrix}, B = \begin{pmatrix} 1 & -1 & -1 \\ 1 & 3 & 1 \\ -1 & -1 & 1 \end{pmatrix}$$

both have characteristic polynomial $f(t) = (t-2)^2(t-1)$. a. (5 pts.) Compute Jordan canonical forms J_1 and J_2 for A and B.

SOLUTION:
$$J_1 = \begin{pmatrix} 2 & 1 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
 and $J_2 = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{pmatrix}$.

b. (5 pts.) Determine whether A and B are similar.

SOLUTION: No, since they are different Jordan type.

c. (5 pts.) Find a Q such that $J_1 = Q^{-1}AQ$; i.e., compute a Jordan basis for A.

SOLUTION: One possible Q is $Q = \begin{pmatrix} 1 & 0 & 1 \\ -1 & 1 & -1 \\ 0 & -1 & 1 \end{pmatrix}$. 3. (10 pts.)Suppose $A, B \in \mathcal{M}_{n \times n}(\mathbb{C})$ are unitarily equivalent.

a. (2 pts.) Write down what this means; i.e., give the the definition of unitarily equivalent.

SOLUTION: There exists a Q with $Q^{-1} = Q^*$ such that $B = Q^* A Q$.

b. (4 pts.) Prove that A is normal $\Leftrightarrow B$ is normal.

SOLUTION: If $A^*A = AA^*$, then $B^*B = (Q^*AQ)^*Q^*AQ = Q^*A^*QQ^*AQ = Q^*A^*AQ = Q^*A^*AQ = Q^*AA^*Q = Q^*AA^*Q = Q^*AQ(Q^*AQ)^* = BB^*$.

c. (4 pts.) Prove that A is self-adjoint $\Leftrightarrow B$ is self-adjoint.

SOLUTION: The proof is almost identical to part b.

4. (10 pts.) Below you must provide a field \mathbb{F} and $A \in M_{2\times 2}(\mathbb{F})$ such that $L_A \colon \mathbb{F}^2 \to \mathbb{F}^2$ satisfies the stated properties. Your A must be explicit. Make sure you specify what \mathbb{F} is! a. (5 pts.) L_A is normal but not diagonalizable.

SOLUTION: We must pick $\mathbb{F} = \mathbb{R}$ here. Just about any rotation matrix will do the trick, as such matrices are unitary and have no eigenvalues, as long as the angle is not 0 or π . Let's settle with $A = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$.

b. (5 pts.) L_A is a projection but not self-adjoint.

SOLUTION: Any nonorthogonal projection of \mathbb{R}^2 will do here. Take the projection on span $\{(1,0)\}$ along span $\{(1,1)\}$, for example. Its matrix is $A = \begin{pmatrix} 1 & -1 \\ 0 & 0 \end{pmatrix}$. 5. (15 pts.) Below information is provided for various $T_i \colon \mathbb{F}^n \to \mathbb{F}^n$. Copy the following table in

5. (15 pts.) Below information is provided for various $T_i \colon \mathbb{F}^n \to \mathbb{F}^n$. Copy the following table in your bluebook and fill each of the squares with a 'YES' or 'NO'. The inner product on \mathbb{F}^n is always the standard one. Please observe the choice of \mathbb{F} in each case.

	Invertible	Diagonalizable	Normal	Self-Adjoint	Unitary
T_1					
T_2					
T_3					

 $T_1 \colon \mathbb{R}^3 \to \mathbb{R}^3 \text{ has eigenvalues 0 and 2, where } E_0 = \{(r, s, 0) \colon r, s \in \mathbb{R}\} \text{ and } E_2 = \operatorname{span}\{(1, 1, 1)\}.$

 $T_2: \mathbb{C}^3 \to \mathbb{C}^3$ has eigenvalues $i, -i, \frac{\sqrt{2}}{2}(1+i), E_i = \operatorname{span}\{(1, -1, 0)\}, E_{-i} = \{(1, 0, -1)\}, E_{\frac{\sqrt{2}}{2}(1+i)} = \operatorname{span}\{(1, 1, 1)\}.$

 $T_3: \mathbb{C}^3 \to \mathbb{C}^3$ has eigenvalues 1 and -1, $E_1 = \text{span}\{(1, 1, -2), (1, -1, 0)\}$ and $E_{-1} = \text{span}\{(1, 1, 1)\}.$

SOLUTION: The general reasoning here is as follows. The transformation is invertible iff 0 is not an eigenvalue. The transformation is diagonalizable iff $n = \sum \dim E_{\lambda_i}$. When $\mathbb{F} = \mathbb{C}$, we have T normal iff T is diagonalizable and the eigenspaces are mutually orthogonal. Similarly, when $\mathbb{F} = \mathbb{C}$ we have T self-adjoint (resp. unitary) iff T is normal and its eigenvalues are real (resp. of absolute value 1). When $\mathbb{F} = \mathbb{R}$, one must look a little more carefully, as normal does not imply diagonalizable in this case.

	Invertible	Diagonalizable	Normal	Self-Adjoint	Unitary
T_1	NO	YES	NO	NO	NO
T_2	YES	YES	NO	NO	NO
T_3	YES	YES	YES	YES	YES

NOTE: The eigenspaces of T_2 are in fact NOT mutually orthogonal. This was trickier than I meant it to be, and many people took them to be mutually orthogonal...MYSELF INCLUDED! For this reason, I also accepted

	Invertible	Diagonalizable	Normal	Self-Adjoint	Unitary
T_2	YES	YES	YES	NO	YES

as a correct answer for T_2 .