Final

Write your name and SID on the front of your blue book. All answers and work should also be written in your blue book. You must JUSTIFY your answers, so show your work. Partial credit will be awarded even if answers are incorrect. No notes, books, or calculators. Good luck!

1. (15 pts .) The matrix

$$
A=\left(\begin{array}{rrrr}
1 & 0 & 0 & i \\
0 & 1 & -i & 0 \\
0 & -i & 1 & 0 \\
i & 0 & 0 & 1
\end{array}\right)
$$

has characteristic polynomial $f(t)=\left(t-\lambda_{1}\right)^{2}\left(t-\lambda_{2}\right)^{2}$, where $\lambda_{1}=1+i$ and $\lambda_{2}=1-i$. a. (5 pts.) Fact: $A^{*}=-\frac{1}{2} A^{3}$. Use this to prove that A is normal.

SOLUTION: $A^{*} A=-1 / 2 A^{3} A=A\left(-1 / 2 A^{3}\right)=A A^{*}$.
b. (5 pts.) From a. it follows that A has a spectral decomposition: $A=\lambda_{1} T_{1}+\lambda_{2} T_{2}$. Compute T_{1} and T_{2} by finding polynomials $g_{i}(t)$ such that $g_{i}(A)=T_{i}$. You must compute the g_{i} and T_{i} for full credit.

SOLUTION: $g_{1}(t)=\left(t-\lambda_{2}\right) /\left(\lambda_{1}-\lambda_{2}\right)=\frac{1}{2 i}(t-(1+i))$ and similarly $g_{2}(t)=\frac{-1}{2 i}(t-(1-i))$. You can now easily compute $T_{i}=g_{i}(A)$.
c. (5 pts.) Using b., find a linear polynomial $g(t)=c t+d$ such that $g(A)=A^{*}$.

SOLUTION: $g(t)=\overline{\lambda_{1}} g_{1}(t)+\overline{\lambda_{2}} g_{2}(t)=-t+2$.
2. (15 pts .) The matrices

$$
A=\left(\begin{array}{rrr}
2 & 0 & -1 \\
0 & 2 & 1 \\
-1 & -1 & 1
\end{array}\right), B=\left(\begin{array}{rrr}
1 & -1 & -1 \\
1 & 3 & 1 \\
-1 & -1 & 1
\end{array}\right)
$$

both have characteristic polynomial $f(t)=(t-2)^{2}(t-1)$.
a. (5 pts.) Compute Jordan canonical forms J_{1} and J_{2} for A and B.

SOLUTION: $J_{1}=\left(\begin{array}{ccc}2 & 1 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1\end{array}\right)$ and $J_{2}=\left(\begin{array}{lll}2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1\end{array}\right)$.
b. (5 pts.) Determine whether A and B are similar.

SOLUTION: No, since they are different Jordan type.
c. (5 pts.) Find a Q such that $J_{1}=Q^{-1} A Q$; i.e., compute a Jordan basis for A.

SOLUTION: One possible Q is $Q=\left(\begin{array}{rrr}1 & 0 & 1 \\ -1 & 1 & -1 \\ 0 & -1 & 1\end{array}\right)$.
3. (10 pts.)Suppose $A, B \in \mathrm{M}_{n \times n}(\mathbb{C})$ are unitarily equivalent.
a. (2 pts.) Write down what this means; i.e., give the the definition of unitarily equivalent.

SOLUTION: There exists a Q with $Q^{-1}=Q^{*}$ such that $B=Q^{*} A Q$.
b. (4 pts.) Prove that A is normal $\Leftrightarrow B$ is normal.

SOLUTION: If $A^{*} A=A A^{*}$, then $B^{*} B=\left(Q^{*} A Q\right)^{*} Q^{*} A Q=Q^{*} A^{*} Q Q^{*} A Q=Q^{*} A^{*} A Q=$ $Q^{*} A A^{*} Q=Q^{*} A Q\left(Q^{*} A Q\right)^{*}=B B^{*}$.
c. (4 pts.) Prove that A is self-adjoint $\Leftrightarrow B$ is self-adjoint.

SOLUTION: The proof is almost identical to part b.
4. (10 pts.) Below you must provide a field \mathbb{F} and $A \in \mathrm{M}_{2 \times 2}(\mathbb{F})$ such that $L_{A}: \mathbb{F}^{2} \rightarrow \mathbb{F}^{2}$ satisfies the stated properties. Your A must be explicit. Make sure you specify what \mathbb{F} is!
a. (5 pts .) L_{A} is normal but not diagonalizable.

SOLUTION:We must pick $\mathbb{F}=\mathbb{R}$ here. Just about any rotation matrix will do the trick, as such matrices are unitary and have no eigenvalues, as long as the angle is not 0 or π. Let's settle with $A=\left(\begin{array}{rr}0 & -1 \\ 1 & 0\end{array}\right)$.
b. (5 pts.$) L_{A}$ is a projection but not self-adjoint.

SOLUTION: Any nonorthogonal projection of \mathbb{R}^{2} will do here. Take the projection on $\operatorname{span}\{(1,0)\}$ along $\operatorname{span}\{(1,1)\}$, for example. Its matrix is $A=\left(\begin{array}{rr}1 & -1 \\ 0 & 0\end{array}\right)$.
5. (15 pts.) Below information is provided for various $T_{i}: \mathbb{F}^{n} \rightarrow \mathbb{F}^{n}$. Copy the following table in your bluebook and fill each of the squares with a 'YES' or 'NO'. The inner product on \mathbb{F}^{n} is always the standard one. Please observe the choice of \mathbb{F} in each case.

	Invertible	Diagonalizable	Normal	Self-Adjoint	Unitary
T_{1}	\mid	\mid			
T_{2}					
T_{3}					

$T_{1}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ has eigenvalues 0 and 2 , where $E_{0}=\{(r, s, 0): r, s \in \mathbb{R}\}$ and $E_{2}=\operatorname{span}\{(1,1,1)\}$.
$T_{2}: \mathbb{C}^{3} \rightarrow \mathbb{C}^{3}$ has eigenvalues $i,-i, \frac{\sqrt{2}}{2}(1+i), E_{i}=\operatorname{span}\{(1,-1,0)\}, E_{-i}=\{(1,0,-1)\}$, $E_{\frac{\sqrt{2}}{2}(1+i)}=\operatorname{span}\{(1,1,1)\}$.
$T_{3}: \mathbb{C}^{3} \rightarrow \mathbb{C}^{3}$ has eigenvalues 1 and $-1, E_{1}=\operatorname{span}\{(1,1,-2),(1,-1,0)\}$ and $E_{-1}=\operatorname{span}\{(1,1,1)\}$.
SOLUTION: The general reasoning here is as follows. The transformation is invertible iff 0 is not an eigenvalue. The transformation is diagonalizable iff $n=\sum \operatorname{dim} E_{\lambda_{i}}$. When $\mathbb{F}=\mathbb{C}$, we have T normal iff T is diagonalizable and the eigenspaces are mutually orthogonal. Similarly, when $\mathbb{F}=\mathbb{C}$ we have T self-adjoint (resp. unitary) iff T is normal and its eigenvalues are real (resp. of absolute value 1). When $\mathbb{F}=\mathbb{R}$, one must look a little more carefully, as normal does not imply diagonalizable in this case.

	Invertible	Diagonalizable	Normal	Self-Adjoint	Unitary	
T_{1}	NO	1 YES	\\| NO	1 NO	NO	
T_{2}	YES	1 YES	NO	NO	NO	
T_{3}	YES	\| YES	YES	YES	YES	

NOTE: The eigenspaces of T_{2} are in fact NOT mutually orthogonal. This was trickier than I meant it to be, and many people took them to be mutually orthogonal...MYSELF INCLUDED! For this reason, I also accepted

| | Invertible | Diagonalizable | Normal | Self-Adjoint | Unitary |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| T_{2} | YES | YES | YES | NO | YES |

as a correct answer for T_{2}.

