MATH 113-S2
 MID-TERM 2

$\mathbf{1}$ (4 pts) Compute the order of $(3,4)$ in the group $\mathbf{Z}_{9} \times \mathbf{Z}_{30}$.
2 Let

$$
\sigma=\left(\begin{array}{llllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
2 & 4 & 1 & 6 & 8 & 3 & 7 & 5
\end{array}\right)
$$

a (3 pts) Write σ as a product of disjoint cycles.
b (3 pts) Hence write sigma as a product of transpositions, and determine whether σ is an even permutation.

3 (5 pts) Let

$$
\phi: G \rightarrow G^{\prime}
$$

be a surjective homomorphism. Assume G is abelian. Show that G^{\prime} is also abelian.

4 (5 pts) Let

$$
\phi: G \rightarrow G^{\prime}
$$

be a surjective homomorphism . Assume that G is finite. Show that

$$
|G|=\left|G^{\prime}\right| \times|\operatorname{ker} \phi|
$$

(Hint: use the fundamental homomorphism theorem.)

MID TERM 2
solutions
4 pos 1) order of 3 in $Z_{9}=\frac{9}{\operatorname{gcd}(3,9)}=\frac{9}{3}=3$ order of $4 \mathrm{in} \mathbb{Z}_{30}=\frac{30}{\operatorname{gcd}(4,30)}=\frac{30}{2}=15$ andes of $(3,4) \dot{\mathbb{Z}_{9}} \times \mathbb{Z}_{30}=$ $=\operatorname{lcm}(3,15)=15$
3 pos 2 a) $\quad \sigma=\left(\begin{array}{llllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 2 & 4 & 1 & 6 & 8 & 3 & 7 & 5\end{array}\right)$

$$
\sigma=(12463)(58)
$$

3 pos $2 b) \sigma=(13)(16)(14)(12)(58)$ 6 can be written as a product of 5 tranpoositions
$\Rightarrow \sigma$ is an and permutation
5pbs 3) Let $a^{\prime}, b^{\prime} \in G^{\prime}$
We have show that $a^{\prime} b^{\prime}=b^{\prime} a^{\prime}$.
Now ϕ sunjective implies that there exist $a, b \in G$ such that $a^{\prime}=\phi(a)$ and $b^{\prime}=\phi(b)$
ϕ is a homomorphism and therefore $a^{\prime} b^{\prime}=\phi(a) \phi(b)=\phi(a b)$
Out G is abelion, so that

$$
a b=b a
$$

and thenepre $\phi(a b)=\phi(b a)$

$$
\begin{aligned}
& \phi(b a)=\phi(b) \phi(a)=b^{\prime} a^{\prime} \\
& \Rightarrow a^{\prime} b^{\prime}=b^{\prime} a^{\prime}
\end{aligned}
$$

spas 4) Using the hint, we have ham the funolamental homomorphism theorem that if G, G 'are groups, $\phi: G \rightarrow G^{\prime}$ homomoiplum wee $H=$ Kernel ϕ, then $\phi \subset G]$ is a group, and $\mu: \frac{G}{H} \rightarrow \phi[G]$ $\mu(g h)=\phi(g)$ is an isomouphism. Now, ϕ sunjective means that $G^{\prime}=\phi[G]$
and, therefore, in thus case we have
$\mu: \frac{G}{H} \longrightarrow G^{\prime}$ isomorphism
This implies that

$$
\left|\frac{G}{H}\right|=\left|G^{\prime}\right|
$$

But pron Lagrange theorem tor a pinite group G this is given by

$$
\left|\frac{G}{H}\right|=\frac{|G|}{|H|}
$$

which is the number of left coset of H, that coincides abs vibe ble number of night coeds.
It follows that

$$
\begin{aligned}
& \text { It follows that } \\
& \frac{|G|}{|H|}=\left|G^{\prime}\right| \Rightarrow|G|=|H|\left|G^{\prime}\right|
\end{aligned}
$$

