UCB Math 128A, Spring 2009: Midterm 1, Solutions

February 20, 2009

Name:

\qquad

SID:

\qquad

GSI:

- No books, no notes, no calculators

Grading

- Justify all answers

1
2

- Do all of the 4 problems
$3 \quad / 25$
- Exam time 50 minutes

4

1. (25 points)

Use any method to find an interpolating polynomial $P(x)$ such that

$$
P(0)=0, \quad P(1)=2, \quad P(2)=2, \quad P(3)=0
$$

Solution: The Lagrange interpolating polynomial is

$$
\begin{aligned}
P(x) & =2 \cdot \frac{(x-0)(x-2)(x-3)}{(1-0)(1-2)(1-3)}+2 \cdot \frac{(x-0)(x-1)(x-3)}{(2-0)(2-1)(2-3)} \\
& =x(x-2)(x-3)-x(x-1)(x-3) \\
& =x^{3}-5 x^{2}+6 x-\left(x^{3}-4 x^{2}+3 x\right) \\
& =-x^{2}+3 x
\end{aligned}
$$

2. (25 points)
(a) Show that the fixed point iteration

$$
p_{n}=\frac{p_{n-1}^{2}+3}{5}, \quad n=1,2, \ldots
$$

converges for any initial $p_{0} \in[0,1]$.
(b) Estimate how many iterations n are required to obtain an absolute error $\left|p_{n}-p\right|$ less than 10^{-4} when $p_{0}=1$. No numerical value needed, just give an expression for n.

Solution: (a) Show $g(x) \in[0,1]$ for $x \in[0,1]$:

$$
\begin{aligned}
& g(0)=3 / 5 \\
& g(1)=4 / 5
\end{aligned}
$$

increasing function

Show $\left|g^{\prime}(x)\right| \leq k<1$:

$$
g^{\prime}(x)=\frac{2 x}{5} \leq \frac{2}{5}=k<1
$$

(b)

$$
10^{-4}=\left|p_{n}-p\right| \leq k^{n} \max \{1,0\}=\left(\frac{2}{5}\right)^{n} \Rightarrow n \approx \frac{-4}{\log _{10} \frac{2}{5}}
$$

3. (25 points)
(a) The following MATLAB code implements the Bisection method. However, there is a fundamental bug in the code. Find and correct the bug.
```
function p=bisection(f,a,b,tol)
while 1
        p=(a+b)/2;
        if p-a<tol, break; end
        if f(b)*f(p)>0
            a=p;
        else
            b=p;
        end
            end
```

(b) Give an upper bound for the error $\left|p_{n}-p\right|$ after n steps of the Bisection method on the interval $[a, b]$ (the corrected one, of course).

Solution: (a) $f(a) * f(p)>0$ or $f(b) * f(p)<0$ or switch $a=p$; and $b=p$;
(b)

$$
\left|p_{n}-p\right| \leq \frac{b-a}{2^{n}}
$$

4. (25 points)
(a) Use Horner's method to evaluate $P(1)$ where

$$
P(x)=2 x^{3}-5 x^{2}+2 x-4
$$

(b) Use your calculations in (a) to find $Q(x)$ and b_{0} such that $P(x)$ can be written

$$
P(x)=(x-1) Q(x)+b_{0}
$$

Solution: (a) We have $a_{3}=2, a_{2}=-5, a_{1}=2, a_{0}=-4$. Horner's method gives

$$
\begin{aligned}
b_{3} & =a_{3}=2 \\
b_{2} & =b_{3} \cdot 1+a_{2}=2 \cdot 1-5=-3 \\
b_{1} & =b_{2} \cdot 1+a_{1}=(-3) \cdot 1+2=-1 \\
P(1)=b_{0} & =b_{1} \cdot 1+a_{0}=(-1) \cdot 1-4=-5
\end{aligned}
$$

(b)

$$
\begin{aligned}
Q(x) & =b_{3} x^{3}+b_{2} x+b_{1}=2 x^{2}-3 x-1 \\
b_{0} & =-5
\end{aligned}
$$

