
Math 55 Final Exam 11 May 2004

NAME (1 pt):

TA (1 pt):

Name of Neighbor to your left (1 pt):

Name of Neighbor to your right (1 pt):

Instructions: This is a closed book, closed notes, closed calculator, closed computer, closed
network, open brain exam.

You get one point each for filling in the 4 lines at the top of this page. All other questions
are worth 10 points.

Write all your answers on this exam. If you need scratch paper, ask for it, write your name
on each sheet, and attach it when you turn it in (we have a stapler).

For full credit justify your answers.

1
2
3
4
5

Total

1

1



Question 1. (10 points)

Question 1a. (5 points) If 61 people are sitting in a row of 80 chairs, prove that there are
at least 4 consecutive occupied chairs.

Answer: Let the pigeons be the 61 people, and the holes be the 20 disjoint sets of 4
consecutive chairs 1-4, 5-8, 9-12, ... , 77-80. By the Generalized Pigeonhole Principle some
hole must get at least �61/20� = 4 pigeons.

Question 1b. (5 points) Label each of the following sets as “finite”, “countably infinite”,
or “uncountable”. Justify your answers (you may cite theorems proven in class).

1. Set of all correct computer programs in Java.

2. Set of all computer programs in Java that have ever been written.

3. Set of rational numbers between 1 and 2.

4. Set of functions with domain {0, 1, 2} and codomain N = {1, 2, 3, ...}.
5. Set of functions with domain N and codomain {0, 1, 2}.

Answer:

1. Countably infinite, because it is an infinite subset of the countable set consisting of all
finite strings of characters on the keyboard.

2. Finite, because each of finitely many Java programmers (or Java generating programs)
can only have written a finite amount of code in the finite amount of time they have
existed, working at a finite speed.

3. Countably infinite. The set of all pairs of integers is countably infinite because it is the
Cartesian product of two countably infinite sets, by a result in class. Then, the rationals
between 1 and 2 are in a one-to-one correspondence with an infinite subset of all pairs
(i, j) of integers, namely those where j �= 0, gcd(i, j) = 1, and j ≤ i ≤ 2j. Finally, an
infinite subset of a countable set is countably infinite by a result shown in class.

4. Countably infinite, because the set of functions is in one-to-one correspondence with
N × N ×N.

5. Uncountable, because we showed in class that the set of all sequences of 0s and 1s is
uncountable by a diagonalization argument, and the set of all sequences of 0s, 1s and 2s
is only larger.
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Question 1. (10 points)

Question 1a. (5 points) If 81 cars are parked in a row of 100 parking places, prove that
there are at least 5 consecutive occupied parking places.

Answer: Let the pigeons be the 81 cars, and the holes be the 20 disjoint sets of 5
consecutive parking places 1-5, 6-10, 11-15, ... , 96-100. By the Generalized Pigeonhole
Principle some hole must get at least �81/20� = 5 pigeons.

Question 1b. (5 points) Label each of the following sets as “uncountable”, “countably
infinite”, or “finite”. Justify your answers (you may cite theorems proven in class).

1. Set of rational numbers between .5 and 1.

2. Set of all correct computer programs in C.

3. Set of functions with domain {−1, 0,+1} and codomain Z = {...,−3,−2,−1, 0, 1, 2, 3, ...}.
4. Set of functions with domain Z and codomain {−1, 0,+1}.
5. Set of all computer programs in C that have ever been written.

Answer:

1. Countably infinite. The set of pairs of integers is countably infinite, because it is the
Cartesian product of two countably infinite sets, by a result in class. Then, the rationals
between .5 and 1 are in a one-to-one correspondence with an infinite subset of all pairs
(i, j) of integers, namely those where j �= 0, gcd(i, j) = 1, and j/2 ≤ i ≤ j. Finally, an
infinite subset of a countable set is countably infinite by a result shown in class.

2. Countably infinite, because it is an infinite subset of the countable set consisting of all
finite strings of characters on the keyboard.

3. Countably infinite, because the set of functions is in one-to-one correspondence with
Z × Z × Z, and the Cartesian product of 3 countably infinite sets is countably infinite.

4. Uncountable, because we showed in class that the set of all sequences of 0s and 1s is
uncountable by a diagonalization argument, and the set of all sequences of −1s, 0s and
1s is only larger.

5. Finite, because each of finitely many C programmers (or C generating programs) can
only have written a finite amount of code in the finite amount of time they have existed,
working at a finite speed.
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Question 2 (10 points)

Question 2a (5 points) Prove algebraically that C(n, r) ·C(n− r, k) = C(n, k) ·C(n− k, r).
Answer:

C(n, r) · C(n − r, k) =
n!

r!(n − r)!
· (n − r)!
k!(n − r − k)!

=
n!
r!

· 1
k!(n − r − k)!

=
n!
k!

· 1
r!(n − r − k)!

=
n!

k!(n − k)!
· (n − k)!
r!(n − r − k)!

= C(n, k) · C(n − k, r)

Question 2b. (5 points) Prove the same identity using a counting argument.
Answer: We count the number of ways to choose a subset of r elements and a disjoint

subset of k elements from a set of n elements. (1) First choose r elements (there are C(n, r)
ways) and then choose k elements from the remaining n − r elements (there are C(n − r, k)
ways). Since each pair of choices leads to a different pair of subsets, the product is the number
of ways, namely C(n, r) · C(n − r, k). (2) First choose k elements and then r elements from
the remaining n − k. The same argument yields the expression C(n, k) · C(n − k, r).
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Question 2 (10 points)

Question 2a (5 points) Prove algebraically that C(m, s) ·C(m−s, j) = C(m, j) ·C(m−j, s).
Answer:

C(m, s) · C(m − s, j) =
m!

s!(m − s)!
· (m − s)!
j!(m − s − j)!

=
m!
s!

· 1
j!(m − s − j)!

=
m!
j!

· 1
s!(m − s − j)!

=
m!

j!(m − j)!
· (m − j)!
s!(m − s − j)!

= C(m, j) · C(m − j, s)

Question 2b. (5 points) Prove the same identity using a counting argument.
Answer: We count the number of ways to choose a subset of s elements and a disjoint

subset of j elements from a set of m elements. (1) First choose s elements (there are C(m, s)
ways) and then choose j elements from the remaining m − s elements (there are C(m − s, j)
ways). Since each pair of choices leads to a different pair of subsets, the product is the number
of ways, namely C(m, s) · C(m − s, j). (2) First choose j elements and then s elements from
the remaining m − j. The same argument yields the expression C(m, j) · C(m − j, s).
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Question 3. (10 points)

Question 3a. (5 points) For what integer values of n does 141s + 264t = n have integer
solutions s and t?

Answer: Either by using the Euclidean algorithm or prime factorization, gcd(141, 264) =
3. Then we know by the extended Euclidean algorithm that there are integers s′ and t′ such
that 141s′ +264t′ = 3, namely s′ = 15 and t′ = −8. So if n is any multiple of 3 then a solution
s = s′n/3 and t = t′n/3 exists, and since 3|141 and 3|264, we get 3|n, so a solution exists only
if 3|n as well.

Question 3b (5 points) Find the set of all solutions to 141x ≡ 33 mod 264.
Answer: The extended Euclidean Algorithm shows that 3 = 15 · 141 − 8 · 264 or 33 =

11 ·3 = 11 ·15 ·141−11 ·8 ·264 = 165 ·141−88 ·264, so x′ = 165 is one solution. Two different
solutions x′ and x satisfy 141(x′ − x) ≡ 0 mod 264, or 264|141(x′ − x) or 88|47(x′ − x) or
88|(x′ − x) since 88 and 47 are relatively prime or x = x′ + m · 88 = 165 + m · 88 for any m
or x ≡ 165 mod 88 ≡ 77 mod 88 is the general solution.
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Question 3. (10 points)

Question 3a. (5 points) For what integer values of r does 261n + 147m = r have integer
solutions n and m?

Answer: Either by using the Euclidean algorithm or prime factorization, gcd(261, 147) =
3. Then we know by the extended Euclidean algorithm that there are integers n′ and m′ such
that 261n′ + 147m′ = 3, namely n′ = −9 and m′ = 16. So if r is any multiple of 3 then a
solution n = n′r/3 and m = m′r/3 exists, and since 3|261 and 3|147, we get 3|r, so a solution
exists only if 3|r as well.

Question 3b (5 points) Find the set of all solutions to 261y ≡ 42 mod 147.
Answer: The extended Euclidean Algorithm shows that 3 = −9 · 261 + 16 · 147 or

42 = 14 · 3 = 14 · (−9) · 261 + 14 · 16 · 147 = −126 · 261 + 224 · 147, so y′ = −126 is one
solution. Two different solutions y′ and y satisfy 261(y′ − y) ≡ 0 mod 147, or 147|261(y′ − y)
or 49|87(y′−y) or 49|(y′−y) since 49 and 87 are relatively prime or y = y′+m·49 = −126+m·49
for any m or y ≡ −126 mod 49 ≡ 21 mod 49 is the general solution.
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Question 4. (10 points) Rosencrantz has an unfair coin that comes up heads 2/3 of the time
and tails 1/3 of the time. He plays the following game: first he flips the coin repeatedly until
it has come up tails a total of twice. If the first two tails are consecutive, then he scores zero
points. If they are non-consecutive, then he scores a number of points equal to the number of
flips up to and including the first tail. Let f be the random variable which is the number of
points he scores.

Question 4a. (5 points) Find the generating function G(x) for the random variable f .
Answer: Note that P (f = 0) = 1

3 , since the chance of getting another tail right after the
first tail (or at any flip, for that matter) is 1

3 . For k > 0, P (f = k) = (2
3)k−1 · 1

3 · 2
3 , since

winning k points means that Rosencrantz gets k − 1 heads in a row, then one tail, then one
head again (further flips do not affect the outcome). Thus

G(x) =
1
3

+
∞∑

k=1

xk · (2
3
)k−1 · 1

3
· 2
3

=
∞∑

k=0

1
3
· (2x

3
)k

=
1
3
· 1
1 − 2x

3

=
1

3 − 2x

Rosencrantz and Guildenstern were minor characters in Shakespeare’s Hamlet. For their
connection to coin tossing, see the first scene of Stoppard’s play “Rosencrantz and Guildenstern
Are Dead.”

Question 4b. (5 points) Compute E(f) and V (f).
Answer: G′(x) = 2

(3−2x)2 so E(f) = G′(1) = 2. G′′(x) = 8
(3−2x)3 so V (f) = G′′(1) +

G′(1) − (G′(1))2 = 8 + 2 − 22 = 6.
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Question 4. (10 points) Guildenstern has an unfair coin that comes up heads 1/4 of the
time and tails 3/4 of the time. He plays the following game: first he flips the coin repeatedly
until it has come up heads a total of twice. If the first two heads are consecutive, then he
scores zero points. If they are non-consecutive, then he scores a number of points equal to the
number of flips up to and including the first head. Let f be the random variable which is the
number of points he scores.

Question 4a. (5 points) Find the generating function G(x) for the random variable f .
Answer: Note that P (f = 0) = 1

4 , since the chance of getting another head right after
the first head (or at any flip, for that matter) is 1

4 . For k > 0, P (f = k) = (3
4 )k−1 · 1

4 · 3
4 , since

winning k points means that Guildenstern gets k − 1 tails in a row, then one head, then one
tail again (further flips do not affect the outcome). Thus

G(x) =
1
4

+
∞∑

k=1

xk · (3
4
)k−1 · 1

4
· 3
4

=
∞∑

k=0

1
4
· (3x

4
)k

=
1
4
· 1
1 − 3x

4

=
1

4 − 3x

Rosencrantz and Guildenstern were minor characters in Shakespeare’s Hamlet. For their
connection to coin tossing, see the first scene of Stoppard’s play “Rosencrantz and Guildenstern
Are Dead.”

Question 4b. (5 points) Compute E(f) and V (f).
Answer: G′(x) = 3

(4−3x)2 so E(f) = G′(1) = 3. G′′(x) = 18
(4−3x)3 so V (f) = G′′(1) +

G′(1) − (G′(1))2 = 18 + 3 − 32 = 12.
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Question 5 (10 points) Sort the following functions into increasing order using O(·) notation.
For example, one possible answer is f1 = O(f2), f2 = O(f3) , .... Justify your answers.

• f1(n) =
∑n

j=1 j4

• f2(n) = n! Hint: Stirling’s formula says n! ≈ √
2πnn+1/2e−n.

• f3(n) = log(log(nnn
))

• f4(n) = 62n
/26n

• f5(n) =
∑n

j=1 4j

Answer: Some simplifications and approximations:

• f1(n) = n5/5 + O(n4)

• f2(n) ≈ √
2π

√
n · e−nnn by Stirling’s formula

• f3(n) = log(nn log n) = n log n + log log n

• log f4(n) = 2n log 6 − 6n log 2 → −∞ as n → ∞ so f4(n) → 0.

• f5(n) = (4n+1 − 1)/3

Thus f4(n) = O(f3(n)) since f1(n) → 0 and f3(n) → ∞.
Then f3(n) = O(f1(n)) since f1(n) grows like n5 and f3(n) grows like n log n.
Then f1(n) = O(f5(n)) since f5(n) grows exponentially (like 4n) and f1(n) just grows like

a polynomial (n5).
Then f5(n) = O(f2(n)) since log f5(n) = O(n) and log f2(n) ≈ (n+1/2) log n−n+log

√
2π

grows like n log n.
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Question 5 (10 points) Sort the following functions into increasing order using O(·) notation.
For example, one possible answer is g5 = O(g1), g1 = O(g3) , .... Justify your answers.

• g1(m) = m! Hint: Stirling’s formula says m! ≈ √
2πmm+1/2e−m.

• g2(m) = 73m
/37m

• g3(m) = log(log(mm2m
))

• g4(m) =
∑m

k=1 k5

• g5(m) =
∑m

k=1 7k

Answer: Some simplifications and approximations:

• g1(m) ≈ √
2π

√
m · e−mmm by Stirling’s formula

• log g2(m) = 3m log 7 − 7m log 3 → −∞ as m → ∞ so g2(m) → 0.

• g3(m) = log(m2m log m) = 2m log m + log log m

• g4(m) = m6/6 + O(m5)

• g5(m) = (7m+1 − 1)/6

Thus g2(m) = O(g3(m)) since g2(m) → 0 and g3(m) → ∞.
Then g3(m) = O(g4(m)) since g4(m) grows like m6 and g3(m) grows like m log m.
Then g4(m) = O(g5(m)) since g5(m) grows exponentially (like 7m) and g4(m) just grows

like a polynomial (m6).
Then g5(m) = O(g1(m)) since log g5(m) = O(m) and log g1(m) ≈ (m + 1/2) log m − m +

log
√

2π grows like m log m.
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