Midterm 1, Solutions

(20) 1. Evaluate the following (indefinite) integrals
a) $\int e^{\sqrt{x}} d x$

Solution: Substitute $x=u^{2}, d x=2 u d u$. The integral becomes

$$
\int 2 u e^{u} d u
$$

We integrate by parts to obtain

$$
\int 2 u e^{u} d u=2 u e^{u}-\int 2 e^{u} d u=2 u e^{u}-2 e^{u}+C=2 \sqrt{x} e^{\sqrt{x}}-2 e^{\sqrt{x}}+C
$$

b) $\quad \int x \tan ^{2} x d x$

Solution: We rewrite the integral as

$$
\int x \tan ^{2} x d x=\int x\left(\sec ^{2} x-1\right) d x=\int x \sec ^{2} x d x-\frac{x^{2}}{2}
$$

The first term is integrated by parts,

$$
\int x \sec ^{2} x d x=x \tan x-\int \tan x d x=x \tan x+\ln |\cos x|+C
$$

The final result is

$$
\int x \tan ^{2} x d x=x \tan x+\ln |\cos x|-\frac{x^{2}}{2}+C
$$

a) $\int_{-\infty}^{\infty} \frac{4 x^{2}}{x^{4}+4} d x$

Solution: We use partial fractions. First we factor the denominator,

$$
x^{4}+4=x^{4}+4 x^{2}+4-4 x^{2}=\left(x^{2}+2\right)^{2}-(2 x)^{2}=\left(x^{2}+2 x+2\right)\left(x^{2}-2 x+2\right)
$$

Then we decompose into partial fractions,

$$
\frac{4 x^{2}}{x^{4}+4}=\frac{A x+B}{x^{2}-2 x+2}-\frac{C x+D}{x^{2}+2 x+2}
$$

This gives

$$
4 x^{2}=(A x+B)\left(x^{2}+2 x+2\right)+(C x+D)\left(x^{2}-2 x+2\right)
$$

Identifying the coefficients we obtain the equations

$$
A+C=0, \quad 2 A+B-2 C+D=4, \quad 2 A+2 B+2 C-2 D=0, \quad 2 B+2 D=0
$$

which has solutions $A=1, B=0, C=-1, D=0$. Hence the indefinite integral becomes

$$
\begin{gathered}
\int \frac{x}{x^{2}-2 x+2}-\frac{x}{x^{2}+2 x+2} d x=\int \frac{x-1}{(x-1)^{2}+1}+\frac{1}{(x-1)^{2}+1}-\frac{x+1}{(x+1)^{2}+1}+\frac{1}{(x+1)^{2}+1} d x \\
=\frac{1}{2} \ln \left((x-1)^{2}+1\right)+\tan ^{-1}(x-1)-\frac{1}{2} \ln \left((x+1)^{2}+1\right)+\tan ^{-1}(x+1)+C \\
=\frac{1}{2} \ln \frac{(x-1)^{2}+1}{(x+1)^{2}+1}+\tan ^{-1}(x-1)+\tan ^{-1}(x+1)+C
\end{gathered}
$$

To find the definite integral we evaluate this between $-\infty$ and ∞. Since

$$
\lim _{x \rightarrow \pm \infty} \frac{(x-1)^{2}+1}{(x+1)^{2}+1}=1
$$

we are left only with the contributions from the last two terms,

$$
\int_{-\infty}^{\infty} \frac{4 x^{2}}{x^{4}+4} d x=\left.\left[\tan ^{-1}(x-1)+\tan ^{-1}(x+1)\right]\right|_{-\infty} ^{\infty}=2 \pi
$$

b) $\int_{0}^{\pi / 2} \frac{\cos x}{\sqrt{1+\sin ^{2} x}} d x$

Solution: First substitute $u=\sin x, d u=\cos x d x$. The integral becomes

$$
\int_{0}^{1} \frac{1}{\sqrt{1+u^{2}}} d u
$$

Then substitute $u=\tan \theta, d u=\sec ^{2} \theta d \theta$, transforming the integral into

$$
\int_{0}^{\pi / 4} \frac{\sec ^{2} \theta}{\sec \theta} d \theta=\int_{0}^{\pi / 4} \sec \theta d \theta=\left.\ln |\sec \theta+\tan \theta|\right|_{0} ^{\pi / 4}=\ln (\sqrt{2}+1)
$$ surface of revolution obtained by rotating the graph of f around the y axis.

Solution:

$$
A=2 \pi \int_{a}^{b} x \sqrt{1+f^{\prime}(x)^{2}} d x
$$

b) Find that area in the case when $f(x)=3 x^{1 / 3}$ and $a=0, b=1$.

Solution: We have

$$
A=2 \pi \int_{0}^{1} x \sqrt{1+x^{-4 / 3}} d x
$$

Substituting $x=u^{3}, d x=3 u^{2} d u$ we transform this into

$$
2 \pi \int_{0}^{1} 3 u^{5} \sqrt{1+u^{-4}} d u=2 \pi \int_{0}^{1} 3 u^{3} \sqrt{u^{4}+1} d u
$$

Setting $u^{4}+1=v, 4 u^{3} d u=d v$ the integral becomes

$$
A=\pi \int_{1}^{2} \frac{3}{2} \sqrt{v} d v=\left.\pi v^{\frac{3}{2}}\right|_{1} ^{2}=\pi(2 \sqrt{2}-1)
$$

4. Determine (providing an explanation) the convergence or divergence of the following series:
a) $\sum_{n=2}^{\infty} \frac{1}{n \sqrt{\ln n}}$

Solution: Use the integral test to compare with the integral

$$
\int_{2}^{\infty} \frac{1}{x \sqrt{\ln x}} d x
$$

Substituting $\ln x=u, x^{-1} d x=d u$ the indefinite integral turns into

$$
\int \frac{1}{\sqrt{u}} d u=2 \sqrt{u}+C=2 \sqrt{\ln x}+C
$$

Then for the improper integral we get

$$
\int_{2}^{\infty} \frac{1}{x \sqrt{\ln x}} d x=\lim _{b \rightarrow \infty} 2 \sqrt{\ln b}-2 \sqrt{\ln 2}=\infty
$$

Hence the improper integral diverges. Then the series is also divergent.
b) $\sum_{n=1}^{\infty} \frac{1+(-1)^{n} n}{n^{2}+2 n}$

Solution: We split the series in two,

$$
\frac{1+(-1)^{n} n}{n^{2}+2 n}=\frac{1}{n^{2}+2 n}+\frac{(-1)^{n}}{n+2}
$$

We have $\frac{1}{n^{2}+2 n} \leq \frac{1}{n^{2}}$ therefore the series $\sum \frac{1}{n^{2}+2 n}$ converges by comparison with the p-series.
On the other hand the series $\sum \frac{(-1)^{n}}{n+2}$ converges due to the alternating test.
Summing up the two series we conclude that the original series converges.
c) $\sum_{n=1}^{\infty} \frac{(n!)^{2}}{e^{n^{2}}}$

Solution: Use ratio test:

$$
\lim _{n \rightarrow \infty} \frac{\frac{((n+1)!)^{2}}{e^{(n+1)^{2}}}}{\frac{(n!)^{2}}{e^{n^{2}}}}=\lim _{n \rightarrow \infty} \frac{(n+1)^{2}}{e^{2 n+1}}
$$

We compute this limit using L'Hopital's rule,

$$
\lim _{x \rightarrow \infty} \frac{(x+1)^{2}}{e^{2 x+1}}=\lim _{x \rightarrow \infty} \frac{x+1}{e^{2 x+1}}=\lim _{x \rightarrow \infty} \frac{1}{2 e^{2 x+1}}=0
$$

By the ratio test it follows that the series is convergent.
5. a) Estimate the error in approximating the following series by the sum of its first 10 terms:
$\sum_{n=1}^{\infty} \frac{1}{n^{4}+n^{2}}$
Solution: We first estimate $\frac{1}{n^{4}+n^{2}} \leq \frac{1}{n^{4}}$. Since the function x^{-4} is decreasing, the error is estimated in terms of the integral,

$$
\left|R_{n}\right| \leq \int_{n}^{\infty} \frac{1}{x^{4}} d x=-\left.\frac{1}{3 x^{3}}\right|_{n} ^{\infty}=\frac{1}{3 n^{3}}
$$

Hence

$$
\left|R_{100}\right| \leq \frac{1}{3000000}
$$

b) Estimate the partial sums of the series

$$
\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}
$$

Solution: The series is a p-series which diverges. Since the function x^{-4} is decreasing, we can compare the partial sums with the corresponding integral,

$$
S_{n} \approx \int_{1}^{n} \frac{1}{\sqrt{x}} d x=\frac{1}{2}(\sqrt{n}-1)
$$

c) Compute the sum of the series

$$
\sum_{n=2}^{\infty} \frac{1}{n^{2}-1}
$$

Using partial fractions we write

$$
\frac{1}{n^{2}-1}=\frac{1}{2}\left(\frac{1}{n-1}-\frac{1}{n+1}\right)
$$

Then the series is a telescopic sum. Its partial sums are

$$
S_{n}=\frac{1}{2}\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{2}-\frac{1}{4}+\frac{1}{3}-\frac{1}{5}+\cdots+\frac{1}{n-2}-\frac{1}{n}+\frac{1}{n-1}-\frac{1}{n+1}\right)
$$

Almost all terms cancel, and we obtain

$$
S_{n}=\frac{1}{2}\left(\frac{1}{1}+\frac{1}{2}-\frac{1}{n}-\frac{1}{n+1}\right) \rightarrow \frac{3}{4}
$$

Hence the sum of the series is $3 / 4$.

