Dr. Martin Olbermann November 1, 2007

Solutions to the Midterm Exam 2

1.

(5+4 points)

a) Give a definition of a ring.

b) Give a definition of a field.

(You do not need to explain any other words you use.)

Solution:

A ring $\langle R, +, \cdot \rangle$ is a set R with two binary operations + and \cdot such that $\langle R, + \rangle$ is an abelian group, \cdot is associative, and the distributive laws hold.

A field is a commutative ring with unity $1\neq 0$ such that each non-zero element is invertible.

2.

(7 points)

For each of the following statements indicate whether it is true or false. You do not have to justify your answer.

 A_n is a normal subgroup of S_n .

TRUE, since each subgroup of order 2 is normal or since $A_n = ker(sign)$.

Every subgroup of an abelian group is normal.

TRUE, since if G is abelian and H is a subgroup, then aH = Ha for all $a \in G$.

If the commutator subgroup of a group is $\{e\}$, then G is abelian.

TRUE, since then, all commutators $aba^{-1}b^{-1}$ are equal to e, and it follows that ab = ba for all elements a, b.

Every integral domain is a field.

FALSE, e.g. \mathbbm{Z} is an integral domain, but not a field.

A ring homomorphism is one-to-one if and only if its kernel is equal to $\{0\}$.

TRUE. We proved this for group homomorphisms. A ring homomorphism is also a group homomorphism of the additive groups of the rings.

The rings $\mathbb{Z}_2 \times \mathbb{Z}_3$ and \mathbb{Z}_6 are isomorphic.

TRUE by the chinese remainder theorem.

The groups $\mathbb{Z}_2 \times \mathbb{Z}_4$ and \mathbb{Z}_8 are isomorphic.

FALSE, for example by the classification of finitely generated abelian groups, or since the second group is cyclic, but not the first.

3.

4.

Let G be a group acting on a set X, and let $x \in X$. Prove that the isotropy subgroup $G_x = \{g \in G \mid gx = x\}$ is a group.

Solution:

We prove that G_x is a subgroup of G. If $g, h \in G_x$, then $gh \in G_x$, since in this case $gh \cdot x = g(hx) = gx = x$ by definition of a group action. $e \in G_x$ since ex = x by definition of a group action. If $g \in G_x$, then $g^{-1} \in G_x$: from gx = x it follows that $x = g^{-1}gx = g^{-1}x$. So G_x is a subgroup of G.

a) Determine the remainder of the division of 6^{3000} by 61.

b) Determine the remainder of the division of 7^{3217} by 34.

Solution:

a) 61 is prime, so we use the little theorem of Fermat to see that $6^{60} \equiv 1 \pmod{61}$. It follows that $6^{3000} = (6^{60})^{50}$ has remainder 1 when divided by 61.

b) We use Euler's theorem: $\phi(34) = 16$, and since gcd(7, 34) = 1, it follows that $7^{16} \equiv 1 \pmod{34}$. It follows that $7^{3217} = (7^{16})^{201} \cdot 7$ has remainder 7 when divided by 34.

5.

(6 points)

Let $(a_1 \ a_2 \ \dots a_k) \in S_n$ be a k-cycle, and let $\sigma \in S_n$ be an arbitrary permutation. Show that $\sigma(a_1 \ a_2 \ \dots a_k)\sigma^{-1} = (\sigma(a_1) \ \sigma(a_2) \ \dots \sigma(a_k))$. Solution:

$$(\sigma(a_1 \ a_2 \ \dots a_k)\sigma^{-1})(\sigma(a_i)) = (\sigma(a_1 \ a_2 \ \dots a_k))(a_i) = \sigma(a_{i+1})$$

for i < k, and

$$(\sigma(a_1 \ a_2 \ \dots a_k)\sigma^{-1})(\sigma(a_k)) = (\sigma(a_1 \ a_2 \ \dots a_k))(a_k) = \sigma(a_1).$$

If $j \notin \{\sigma(a_1), \ldots, \sigma(a_k)\}$, then $\sigma^{-1}(j) \notin \{a_1, \ldots, a_k\}$, and

$$(\sigma(a_1 \ a_2 \ \dots a_k)\sigma^{-1})(j) = (\sigma(a_1 \ a_2 \ \dots a_k))(\sigma^{-1}(j)) = \sigma(\sigma^{-1}(j)) = j.$$

It follows that $\sigma(a_1 \ a_2 \ \dots a_k)\sigma^{-1} = (\sigma(a_1) \ \sigma(a_2) \ \dots \sigma(a_k)).$

(3+4 points)

(6 points)

(6+3 points)

The dihedral group $D_4 = \{e, (1\ 2\ 3\ 4), (1\ 3)(2\ 4), (1\ 4\ 3\ 2), (1\ 4)(2\ 3), (1\ 3), (2\ 4), (1\ 2)(3\ 4)\}$ is a subgroup of S_4 of order 8.

a) Show that $H = \langle (1 \ 3)(2 \ 4) \rangle$ is a normal subgroup of D_4 .

b) Find an abelian group isomorphic to D_4/H .

Solution:

a) We compute the left and right cosets: The left cosets are $H = \{e, (1 \ 3)(2 \ 4)\}, (1 \ 2 \ 3 \ 4)H = \{(1 \ 2 \ 3 \ 4), (1 \ 4 \ 3 \ 2)\}, (1 \ 3)H = \{(1 \ 3), (2 \ 4)\}, (1 \ 4)(2 \ 3)H = \{(1 \ 4)(2 \ 3), (1 \ 2)(3 \ 4)\}.$ The right cosets are $H = \{e, (1 \ 3)(2 \ 4)\}, H(1 \ 2 \ 3 \ 4) = \{(1 \ 2 \ 3 \ 4), (1 \ 4 \ 3 \ 2)\}, H(1 \ 3) = \{(1 \ 3), (2 \ 4)\}, H(1 \ 4)(2 \ 3) = \{(1 \ 4)(2 \ 3), (1 \ 2)(3 \ 4)\}.$ Since right and left cosets are equal, H is a normal subgroup of D_4 .

b) D_4/H has 4 elements, so we only have to check whether the group is isomorphic to \mathbb{Z}_4 or to $\mathbb{Z}_2 \times \mathbb{Z}_2$. Since $(1\ 2\ 3\ 4)H(1\ 2\ 3\ 4)H = (1\ 3)(2\ 4)H = H$, $(1\ 3)H(1\ 3)H = eH = H$, $(1\ 4)(2\ 3)H(1\ 4)(2\ 3)H = eH = H$, we see that D_4/H is not cyclic, hence isomorphic to $\mathbb{Z}_2 \times \mathbb{Z}_2$.

7.

(6 points)

Let $\phi: G \to G'$ be a group homomorphism between a group G of order 36 and a group G' of order 55. Use the homomorphism theorem and the theorem of Lagrange to prove that ϕ is the trivial homomorphism.

Solution:

By the homomorphism theorem, the groups $G/Ker(\phi)$ and $\phi(G)$ are isomorphic. The order of $G/Ker(\phi)$ is the index of $Ker(\phi)$ in G, so a divisor of 36 by the theorem of Lagrange. $\phi(G)$ is a subgroup of G', so its order is a divisor of 55 by the theorem of Lagrange. Since $G/Ker(\phi)$ and $\phi(G)$ are isomorphic, they have the same order, which must be a common divisor of 36 and 55. But 36 and 55 are relatively prime, so $G/Ker(\phi)$ and $\phi(G)$ both have order 1. It follows that $\phi(G) = \{e\}$, so ϕ maps each element of G to e.

6.