Solutions to the Midterm Exam 2

1.

a) Give a definition of a ring.
b) Give a definition of a field.
(You do not need to explain any other words you use.)
Solution:
A ring $\langle R,+, \cdot\rangle$ is a set R with two binary operations + and \cdot such that $\langle R,+\rangle$ is an abelian group, \cdot is associative, and the distributive laws hold.
A field is a commutative ring with unity $1 \neq 0$ such that each non-zero element is invertible.
2.

For each of the following statements indicate whether it is true or false. You do not have to justify your answer.
A_{n} is a normal subgroup of S_{n}.
TRUE, since each subgroup of order 2 is normal or since $A_{n}=\operatorname{ker}(\operatorname{sign})$.
Every subgroup of an abelian group is normal.
TRUE, since if G is abelian and H is a subgroup, then $a H=H a$ for all $a \in G$.
If the commutator subgroup of a group is $\{e\}$, then G is abelian.
TRUE, since then, all commutators $a b a^{-1} b^{-1}$ are equal to e, and it follows that $a b=b a$ for all elements a, b.
Every integral domain is a field.
FALSE, e.g. \mathbb{Z} is an integral domain, but not a field.
A ring homomorphism is one-to-one if and only if its kernel is equal to $\{0\}$.
TRUE. We proved this for group homomorphisms. A ring homomorphism is also a group homomorphism of the additive groups of the rings.
The rings $\mathbb{Z}_{2} \times \mathbb{Z}_{3}$ and \mathbb{Z}_{6} are isomorphic.
TRUE by the chinese remainder theorem.

The groups $\mathbb{Z}_{2} \times \mathbb{Z}_{4}$ and \mathbb{Z}_{8} are isomorphic.
FALSE, for example by the classification of finitely generated abelian groups, or since the second group is cyclic, but not the first.

3.

Let G be a group acting on a set X, and let $x \in X$. Prove that the isotropy subgroup $G_{x}=\{g \in G \mid g x=x\}$ is a group.
Solution:
We prove that G_{x} is a subgroup of G. If $g, h \in G_{x}$, then $g h \in G_{x}$, since in this case $g h \cdot x=g(h x)=g x=x$ by definition of a group action. $e \in G_{x}$ since $e x=x$ by definition of a group action. If $g \in G_{x}$, then $g^{-1} \in G_{x}$: from $g x=x$ it follows that $x=g^{-1} g x=g^{-1} x$. So G_{x} is a subgroup of G.
4.
a) Determine the remainder of the division of 6^{3000} by 61 .
b) Determine the remainder of the division of 7^{3217} by 34 .

Solution:
a) 61 is prime, so we use the little theorem of Fermat to see that $6^{60} \equiv 1(\bmod 61)$. It follows that $6^{3000}=\left(6^{60}\right)^{50}$ has remainder 1 when divided by 61 .
b) We use Euler's theorem: $\phi(34)=16$, and since $\operatorname{gcd}(7,34)=1$, it follows that $7^{16} \equiv 1$ $(\bmod 34)$. It follows that $7^{3217}=\left(7^{16}\right)^{201} \cdot 7$ has remainder 7 when divided by 34 .
5.
(6 points)
Let $\left(a_{1} a_{2} \ldots a_{k}\right) \in S_{n}$ be a k-cycle, and let $\sigma \in S_{n}$ be an arbitrary permutation. Show that $\sigma\left(a_{1} a_{2} \ldots a_{k}\right) \sigma^{-1}=\left(\sigma\left(a_{1}\right) \sigma\left(a_{2}\right) \ldots \sigma\left(a_{k}\right)\right)$.
Solution:

$$
\left(\sigma\left(a_{1} a_{2} \ldots a_{k}\right) \sigma^{-1}\right)\left(\sigma\left(a_{i}\right)\right)=\left(\sigma\left(a_{1} a_{2} \ldots a_{k}\right)\right)\left(a_{i}\right)=\sigma\left(a_{i+1}\right)
$$

for $i<k$, and

$$
\left(\sigma\left(a_{1} a_{2} \ldots a_{k}\right) \sigma^{-1}\right)\left(\sigma\left(a_{k}\right)\right)=\left(\sigma\left(a_{1} a_{2} \ldots a_{k}\right)\right)\left(a_{k}\right)=\sigma\left(a_{1}\right)
$$

If $j \notin\left\{\sigma\left(a_{1}\right), \ldots \sigma\left(a_{k}\right)\right\}$, then $\sigma^{-1}(j) \notin\left\{a_{1}, \ldots a_{k}\right\}$, and

$$
\left(\sigma\left(a_{1} a_{2} \ldots a_{k}\right) \sigma^{-1}\right)(j)=\left(\sigma\left(a_{1} a_{2} \ldots a_{k}\right)\right)\left(\sigma^{-1}(j)\right)=\sigma\left(\sigma^{-1}(j)\right)=j .
$$

It follows that $\sigma\left(a_{1} a_{2} \ldots a_{k}\right) \sigma^{-1}=\left(\sigma\left(a_{1}\right) \sigma\left(a_{2}\right) \ldots \sigma\left(a_{k}\right)\right)$.
6.

The dihedral group $D_{4}=\{e,(1234),(13)(24),(1432),(14)(23),(13),(24),(12)(34)\}$ is a subgroup of S_{4} of order 8 .
a) Show that $H=\langle(13)(24)\rangle$ is a normal subgroup of D_{4}.
b) Find an abelian group isomorphic to D_{4} / H.

Solution:
a) We compute the left and right cosets: The left cosets are $H=\{e,(13)(24)\},(1234) H=$
 The right cosets are $H=\left\{e,\left(\begin{array}{ll}1 & 3\end{array}\right)\left(\begin{array}{ll}2 & 4\end{array}\right)\right\}, H\left(\begin{array}{lll}1 & 2 & 3\end{array}\right)=\left\{\left(\begin{array}{lll}1 & 2 & 3\end{array}\right),\left(\begin{array}{lll}1 & 4 & 3\end{array}\right)\right\}, H\left(\begin{array}{ll}1 & 3\end{array}\right)=$ $\{(13),(24)\}, H(14)(23)=\{(14)(23),(12)(34)\}$. Since right and left cosets are equal, H is a normal subgroup of D_{4}.
b) D_{4} / H has 4 elements, so we only have to check whether the group is isomorphic to \mathbb{Z}_{4} or to $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$. Since (1 234 4) $H\left(\begin{array}{ll}1 & 2 \\ 3\end{array}\right.$ 4) $H=(13)(24) H=H,(13) H(13) H=e H=$ $H,(14)(23) H(14)(23) H=e H=H$, we see that D_{4} / H is not cyclic, hence isomorphic to $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$.

7.

(6 points)
Let $\phi: G \rightarrow G^{\prime}$ be a group homomorphism between a group G of order 36 and a group G^{\prime} of order 55 . Use the homomorphism theorem and the theorem of Lagrange to prove that ϕ is the trivial homomorphism.
Solution:
By the homomorphism theorem, the groups $G / \operatorname{Ker}(\phi)$ and $\phi(G)$ are isomorphic. The order of $G / \operatorname{Ker}(\phi)$ is the index of $\operatorname{Ker}(\phi)$ in G, so a divisor of 36 by the theorem of Lagrange. $\phi(G)$ is a subgroup of G^{\prime}, so its order is a divisor of 55 by the theorem of Lagrange. Since $G / \operatorname{Ker}(\phi)$ and $\phi(G)$ are isomorphic, they have the same order, which must be a common divisor of 36 and 55 . But 36 and 55 are relatively prime, so $G / \operatorname{Ker}(\phi)$ and $\phi(G)$ both have order 1. It follows that $\phi(G)=\{e\}$, so ϕ maps each element of G to e.

