Math 110-S2 Second in-class exam

Please write your name on each blue-book, and the number of blue-books used, if you use more than one.

You have until 9:30. Write all proofs in *full sentences* and show your work whenever possible. There are three problems plus and extra credit question, skip ahead if you get stuck.

Good luck!

- (1) (a) (6 pts) Define the notion of Linear operator. Define the notion of null space of a linear transformation. State The Dimension Theorem. **Answer:** A *linear operator* is a linear transformation for which domain and codomain coincide. The *null space* of a linear transformation is the preimage of the zero vector. The Dimension Theorem states that given $T \in \mathcal{L}(V, W)$ with V finite dimensional, then dim $V = \dim N(T) + \dim R(T)$.
 - (b) (6 pts) Define the notion of standard representation of a vector space with respect to an ordered basis . Define what it means for two vector spaces to be isomorphic. Define the notion of dual basis.

Answer: Let V be a vector space over a field \mathbb{F} and let $\beta = \{x_1, \ldots, x_n\} \subseteq V$ be an ordered basis. The standard representation of V with respect to β is the linear transformation $\phi_\beta : V \to \mathbb{F}^n$ such that $\phi_\beta(x_i) = e_i$ for $i = 1, \ldots, n$. Two vector spaces V, W defined over the same field \mathbb{F} , are *isomorphic* if there exists an invertible linear transformation $T \in (V, W)$. Let V be vector space with basis $\beta = \{x_1, x_2, \ldots, x_n\}$. The dual basis β^* of β is the subset $\{f_1, f_2, \ldots, f_n\}$ of V* such that $f_i(x_j) := \delta_{ij}$.

- (2) (12 pts) Label each of the following statements as True or False. Justify your answers.
 - (a) A function $T : \mathbb{Q}^2 \to \mathbb{Q}^2$ is a linear transformation if and only if T(cx) = cTx for all $x \in \mathbb{Q}^2$ and for all $c \in \mathbb{Q}$.

Answer: FALSE. The function that is equal to the identity on the union of the coordinate axes and zero elsewhere has the desired property but is not additive because

$$(1,0) + (0,1) = (1,1) \neq 0 = 0(1,1).$$

(b) If V is vector space over a field \mathbb{F} then there exist integers m, n such that V is isomorphic to $M_{m \times n}(\mathbb{F})$.

Answer: FALSE. If V is infinite-dimensional, it cannot be isomorphic to a finite dimensional vector space.

- (c) $T \in \mathcal{L}(\mathbb{F}^n)$ is an isomorphism if and only if there exists a $U \in \mathcal{L}(\mathbb{F}^n)$ such that $UT = I_{\mathbb{F}^n}$. **Answer:** TRUE. A linear transformation between two vector spaces of the same dimension is an isomorphism if and only if it is one-to-one if and only if it has a right inverse.
- (3) (26 pts) This problem is divided in four parts. For each part, explain carefully all the steps that led you to the solution. Let \mathbb{F} be the field with two elements and let V be a two dimensional vector space over \mathbb{F} .
 - (a) Compute the number of ordered bases of V.
 Answer: Fix a basis {x₁, x₂} of V. The other possible bases are {x₁, x₁+ x₂} and {x₂, x₁ + x₂}. Taking the order into account, there is a total of six ordered bases.
 - (b) Compute the number of elements of $\mathcal{L}(V)$. **Answer:** $\mathcal{L}(V)$ is a vector space of dimension 4 over a field of 2 elements and therefore consists of 16 elements.
 - (c) Compute the number of isomorphisms in $\mathcal{L}(V)$. **Answer:** By adjunction, this is the same as the number of ordered bases as computed in part (a) i.e. 6
 - (d) Compute the number of operators in $\mathcal{L}(V)$ whose range is one-dimensional. **Answer:** The range is a subspace and so its dimension is in between 0 and 2. Linear operators with a two-dimensional range are isomorphism and so there are 6 of them. The only linear operator with a zero-dimensional range is the zero linear operator. Thus the total number of linear operators with a one-dimensional range is 16 - 6 - 1 = 9.

EXTRA CREDIT (5pts) Let \mathbb{F} be an arbitrary field and let V be an arbitrary vector space over \mathbb{F} . Answer questions (a), (b), (c), (d) in Problem (3).

Answer: If either dim V or $|\mathbb{F}|$ are infinite, the answer is infinity by adjunction. for all questions. If not, dim V = n and $|\mathbb{F}| = q$. Then the number of ordered bases (also equal, by adjunction, to the number of isomorphisms in $\mathcal{L}(V)$) is

$$(q^{n}-1)(q^{n}-q)\cdots(q^{n}-q^{n-1})$$

and $|\mathcal{L}(V)| = q^{n^2}$. The number of operator whose range is one-dimensional is equal to the number of one-dimensional subspaces times the number of non-zero vectors in the dual space i.e.

$$\frac{(q^n-1)^2}{q-1}$$