MATH 54 - OLD MIDTERM \#2

Problem \#1 (a). Find the eigenvalues of the matrix

$$
\left[\begin{array}{ll}
4 & 1 \\
1 & 4
\end{array}\right]
$$

(b). Compute the Wronskian of the functions

$$
y_{1}(x)=e^{x} \cos x, \quad y_{2}(x)=e^{x} \sin x
$$

Problem \#2. Find the determinant of the matrix

$$
\left[\begin{array}{llll}
1 & 0 & 1 & 2 \\
1 & 1 & 4 & 0 \\
1 & 1 & 0 & 2 \\
1 & 1 & 0 & 1
\end{array}\right]
$$

Problem \#3. Apply the Gram-Schmidt process to convert the vectors

$$
\mathbf{v}_{1}=(1,2,1), \quad \mathbf{v}_{2}=(1,-1,1), \quad \mathbf{v}_{3}=(1,2,-1)
$$

into an orthonormal basis of \mathbb{R}^{3}.

Problem \#4. Let A be a real $n \times n$ symmetric matrix.
Prove that if $\mathbf{v}_{1}, \mathbf{v}_{2}$ are eigenvectors of A corresponding to the distinct eigenvalues λ_{1}, λ_{2}, then

$$
\mathbf{v}_{1}, \mathbf{v}_{2} \text { are orthogonal. }
$$

Problem \#5. Let A be a real $n \times n$ matrix and consider the symmetric matrix $B=A^{T} A$. Show that if λ is an eigenvalue of B, then

$$
\lambda \geq 0
$$

(Hint: Since λ is an eigenvalue, we have $B \mathbf{v}=\lambda \mathbf{v}$ for some eigenvector $\mathbf{v} \neq \mathbf{0}$. Now use the dot product.)

