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Midterm Exam 1 - Solutions

1. Give a (detailed) definition of a group. (8 points)

Solution: (This is the most important definition so far. You have to know it!)
A group 〈G, ∗〉 is a binary algebraic structure, i.e. a set G together with a map ∗ :
G×G→ G, (a, b) 7→ a ∗ b, that has the following three properties:
G1: Associativity of ∗: (a ∗ b) ∗ c = a ∗ (b ∗ c) for all a, b, c ∈ G.
G2: There is an identity element for ∗, i.e. an element e ∈ G s.t. e ∗ x = x ∗ e = x for
all x ∈ G.
G3: Each element has an inverse, i.e. for each a ∈ G there is an element a′ ∈ G s.t.
a ∗ a′ = a′ ∗ a = e.

2. For each of the following statements indicate whether it is true or false. (7 points)

If the binary operation ∗ on a set S is commutative, then
a ∗ (b ∗ c) = (b ∗ c) ∗ a for all a, b, c ∈ S.

TRUE (since the commutative law allows to exchange (b ∗ c) and a)

If the binary operation ∗ on a set S is associative, then
a ∗ (b ∗ c) = (b ∗ c) ∗ a for all a, b, c ∈ S.

FALSE (the associative law only allows to put brackets at other places, but here the
order of the variables has changed)

There exists a group G and elements a, b, c ∈ G
such that a 6= c, but ab = cb.

FALSE (in a group one has cancellation laws, so one can cancel b on both sides in ab = cb)

If two groups have the same number of elements, they are isomorphic.

FALSE (you have seen examples of this: e.g. Z4 and the four-group V both have four
elements, but they are not isomorphic since in V , each element is the inverse to itself,
and in Z4 not)

In every group, the identity element is the only element of order 1.

TRUE (the subgroup contained by a ∈ G contains always a and a0 = e; if the subgroup
contained by a has 1 element, then a = e; on the other hand e generates the subgroup
{e})



Every abelian group is cyclic.

FALSE (e.g. V is abelian but not cyclic. It is true that every cyclic group is abelian.)

If a is an element of a group of order 4, then a2 has order 2.

TRUE or FALSE (oops - there were two interpretations of that statement, so no matter
what you wrote, you got a point for that)
1) if a ∈ G and a has order 4, then a2 has order 2. This is TRUE since if a has order 4,
then 4 is the smallest positive exponent m s.t. am = e. Then 2 is the smallest positive
exponent s.t. (a2)m = e, so a2 has order 2.
2) if a ∈ G and G has order 4, then it is possible that a = e, so a2 = e has order 1, so
the statement is FALSE.)

3. (4 + 4 points)

a) Let U = {z ∈ C | |z| = 1}. Show that the relation ∼ on U , defined by

x ∼ y if and only if xn = yn

is an equivalence relation.

Solution: For all x, y, z ∈ U :
xn = xn ⇒ x ∼ x so the relation is reflexive.
if x ∼ y, then xn = yn, so yn = xn ⇒ y ∼ x, so the relation is symmetric,
if x ∼ y and if y ∼ z, then xn = yn = zn, so x ∼ z, i.e. the relation is transitive.
Thus it is an equivalence relation.

b) Show that each equivalence class (cell of the corresponding partition) of the equiva-
lence relation in a) is a set of cardinality n.

Solution: Let x ∈ U . We show that the equivalence class which contains x has
cardinality n, i.e. that the set S = {y ∈ U | y ∼ x} has exactly n elements.
S = {y ∈ U | yn = xn}. xn ∈ U , so let xn = eiφ, where 0 ≤ φ < 2π. We
solve the equation yn = eiφ (say in C): we must have |y| = 1 (thus all solutions
in C are solutions in U), and if ψ is the polar angle of y, where 0 ≤ ψ < 2π,
we must have that nψ − φ is a multiple of 2π. There are n possible values for ψ:
φ/n, φ/n+ 2π/n, . . . , φ/n+ (n− 1) · 2π/n. Thus the equation yn = xn has exactly n
solutions in U , i.e. S has cardinality n.

4. (7 points)

Recall that Un = {z ∈ C | zn = 1} for n ∈ Z+ is a group under multiplication.
Find all subgroups of the group U70 and draw a subgroup diagram. (Lines of the diagram
are allowed to cross each other.) Identify all subgroups that are equal to Un for some n.

Solution: For n ∈ Z+, we have that Un is a cyclic group of order n with generator
ζn = e

2πi
n . U70 is a cyclic group of order 70 with generator ζ70. By the theorem about



subgroups of finite cyclic groups we proved in class, the subgroups of U70 are the groups
〈ζd

70〉, where d is a divisor of 70. The divisors of 70 are: 1, 2, 5, 7, 10, 14, 35, 70. So we get
subgroups 〈ζ1

70〉 = U70, 〈ζ2
70〉 = 〈ζ35〉 = U35, since ζ2

70 = ζ35, 〈ζ5
70〉 = U14, since ζ5

70 = ζ14,
〈ζ7

70〉 = U10, since ζ7
70 = ζ10, 〈ζ10

70 〉 = U7, 〈ζ14
70 〉 = U5, 〈ζ35

70 〉 = U2, 〈ζ70
70 〉 = U1. The

subgroup diagram is:
U70

zz
zz

zz
zz

DD
DD

DD
DD

U35

DD
DD

DD
DD

U14

zz
zz

zz
zz

DD
DD

DD
DD

U10

zz
zz

zz
zz

U7

DD
DD

DD
DD

U5 U2

zz
zz

zz
zz

U1

5. (4 + 4 points)

a) Show that Z[1
2
] = {p

q
| p ∈ Z, q = 2n for some n ∈ Z+} is a subgroup of Q under

addition.

Solution: Z[1
2
] is closed under addition since for all p1, p2 ∈ Z, n1, n2 ∈ Z+, we have

p1

2n1
+

p1

2n1
=
p1 · 2n2 + p2 · 2n1

2n1+n2
∈ Z

[
1

2

]
.

The identity element of Q is 0 = 0
2
∈ H. If p

2n ∈ Z[1
2
], where p ∈ Z, n ∈ Z+, then

its inverse in Q is −p
2n ∈ Z[1

2
]. By the theorem about characterizing properties of

subgroups we proved in class, Z[1
2
] is a subgroup of Q under addition.

b) Show that Z[1
2
] is not a finitely generated abelian group.

Solution: Let S = {a1 = p1

2n1
, . . . am = pm

2nm } be a finite subset of Z[1
2
]. The subgroup

H generated by S consists (by transferring the theorem in class into the additive
notation that we use here) of all finite sums of integer multiples of elements of S,
that is H = {λ1a1 + . . . + λmam | λi ∈ Z}. But all elements in this set are integer
multiples of q = 1

2n1+···+nm . This implies that q
2

= 1
2n1+···+nm+1 is contained in Z[1

2
],

but not in H. It follows that no finite set S generates Z[1
2
].

6. (4 + 4 + 4 points)

Let G be a group. An isomorphism f : G → G is called an automorphism of G. The
set of all automorphisms of G is denoted by Aut(G). It is a group under composition of
functions (you do not have to prove this).

a) Show that there is an element f ∈ Aut(Z8) (i.e. an isomorphism f : Z8 → Z8) such
that f(1) = 5.



Solution: (If such an isomorphism f exists, it must be bijective, and we must have
f(m +8 n) = f(m) +8 f(n) for all m,n ∈ Z8. So for example one must have f(2) =
f(1 +8 1) = f(1) +8 f(1) = 5 +8 5 = 2, and f(3) = f(2 +8 1) = . . . and so on. One
may find the formula f(n) = 5 +8 . . .+8 5, with n summands, in that way. We also
proved that an isomorphism sends identity element to identity element. So it must
map 0 to 0.)

We have gcd(5, 8) = 1, so 5 is a generator for Z8, so Z8 consists of the elements
0, 5, 5 +8 5, 5 +8 5 +8 5, . . . 5 +8 5 +8 5 +8 5 +8 5 +8 5 +8 5. (The sum modulo 8 with 8
summands equal to 5 is 0.) The map f : Z8 → Z8 defined by f(n) = 5 +8 . . . +8 5,
with n summands, is an isomorphism. (It is obviously well-defined, surjective and
injective. We have f(m +8 n) = f(m) +8 f(n) for all m,n ∈ Z8 since the sum with
8 summands is 0, so the sum with m +8 n summands equals the sum with m + n
summands.)

One could also refer to the proof that every finite cyclic group G = 〈a〉 is isomorphic
to Zn: the proof constructs an isomorphism Zn → G which sends 1 ∈ Zn to a ∈ G
(or the inverse isomorphism, to be exact). Now we put G = Z8, a = 5 and we are
done.

b) What is the order of Aut(Z8)? (Justify your answer.)

Solution: As we have seen in part a) (or also in the last problem of homework 4:)
For each i ∈ Z8, there exists at most one isomorphism f s.t. f(1) = i: because of
the homomorphism property, one must have f(n) = i+8 . . .+8 i, with n summands.

Since Z8 = 〈1〉 = 〈3〉 = 〈5〉 = 〈7〉, we can do the same steps as in part a) to
construct four isomorphisms f1, f3, f5, f7 such that fi(1) = i, and they are given by
fi(n) = i+8 . . .+8 i, with n summands.

The candidates for an isomorphism fi(n) = i +8 . . . +8 i, where i = fi(1) is even,
do all send 0 to 0 and 4 to 0, so there are no isomorphisms where f(1) is even. So
Aut(Z8) = {f1, f3, f5, f7}, i.e. Aut(Z8) has order 4.

c) Show that Aut(Z8) is isomorphic to a group that you have seen in class.

Solution: We have seen in class that all groups of four elements are either isomorphic
to Z4 or to the Klein 4-group V .

f1 = id is the identity function, i.e. the identity element of the group. But since
Aut(Z8) is a group, it is closed under composition, so we must have f3 ◦ f3 = fi for
some i ∈ {1, 3, 5, 7}. We compute f3(f3(1)) = f3(3) = 3 +8 3 +8 3 = 1, so we must
have f3 ◦ f3 = f1. But similarly, we compute that (we could compute the whole
group table of Aut(Z8)) f1 ◦ f1 = f3 ◦ f3 = f5 ◦ f5 = f7 ◦ f7 = f1, so each element of
the group is its own inverse. Therefore the group Aut(Z8) must be isomorphic to V
(and not to Z4).


