Midterm Exam 1 - Solutions

1. Give a (detailed) definition of a group.

Solution: (This is the most important definition so far. You have to know it!)
A group $\langle G, *\rangle$ is a binary algebraic structure, i.e. a set G together with a map *: $G \times G \rightarrow G,(a, b) \mapsto a * b$, that has the following three properties:
G_{1} : Associativity of $*:(a * b) * c=a *(b * c)$ for all $a, b, c \in G$.
G_{2} : There is an identity element for $*$, i.e. an element $e \in G$ s.t. $e * x=x * e=x$ for all $x \in G$.
G_{3} : Each element has an inverse, i.e. for each $a \in G$ there is an element $a^{\prime} \in G$ s.t. $a * a^{\prime}=a^{\prime} * a=e$.
2. For each of the following statements indicate whether it is true or false.

If the binary operation $*$ on a set S is commutative, then $a *(b * c)=(b * c) * a$ for all $a, b, c \in S$.
TRUE (since the commutative law allows to exchange $(b * c)$ and a)

If the binary operation $*$ on a set S is associative, then $a *(b * c)=(b * c) * a$ for all $a, b, c \in S$.
FALSE (the associative law only allows to put brackets at other places, but here the order of the variables has changed)

There exists a group G and elements $a, b, c \in G$
such that $a \neq c$, but $a b=c b$.
FALSE (in a group one has cancellation laws, so one can cancel b on both sides in $a b=c b$)

If two groups have the same number of elements, they are isomorphic.
FALSE (you have seen examples of this: e.g. \mathbb{Z}_{4} and the four-group V both have four elements, but they are not isomorphic since in V, each element is the inverse to itself, and in \mathbb{Z}_{4} not)

In every group, the identity element is the only element of order 1.
TRUE (the subgroup contained by $a \in G$ contains always a and $a^{0}=e$; if the subgroup contained by a has 1 element, then $a=e$; on the other hand e generates the subgroup $\{e\})$

Every abelian group is cyclic.
FALSE (e.g. V is abelian but not cyclic. It is true that every cyclic group is abelian.)

If a is an element of a group of order 4, then a^{2} has order 2.
TRUE or FALSE (oops - there were two interpretations of that statement, so no matter what you wrote, you got a point for that)

1) if $a \in G$ and a has order 4 , then a^{2} has order 2 . This is TRUE since if a has order 4, then 4 is the smallest positive exponent m s.t. $a^{m}=e$. Then 2 is the smallest positive exponent s.t. $\left(a^{2}\right)^{m}=e$, so a^{2} has order 2 .
2) if $a \in G$ and G has order 4 , then it is possible that $a=e$, so $a^{2}=e$ has order 1 , so the statement is FALSE.)
3.

$$
(4+4 \text { points })
$$

a) Let $U=\{z \in \mathbb{C}| | z \mid=1\}$. Show that the relation \sim on U, defined by

$$
x \sim y \text { if and only if } x^{n}=y^{n}
$$

is an equivalence relation.
Solution: For all $x, y, z \in U$:
$x^{n}=x^{n} \Rightarrow x \sim x$ so the relation is reflexive.
if $x \sim y$, then $x^{n}=y^{n}$, so $y^{n}=x^{n} \Rightarrow y \sim x$, so the relation is symmetric,
if $x \sim y$ and if $y \sim z$, then $x^{n}=y^{n}=z^{n}$, so $x \sim z$, i.e. the relation is transitive. Thus it is an equivalence relation.
b) Show that each equivalence class (cell of the corresponding partition) of the equivalence relation in a) is a set of cardinality n.
Solution: Let $x \in U$. We show that the equivalence class which contains x has cardinality n, i.e. that the set $S=\{y \in U \mid y \sim x\}$ has exactly n elements.
$S=\left\{y \in U \mid y^{n}=x^{n}\right\}$. $x^{n} \in U$, so let $x^{n}=e^{i \phi}$, where $0 \leq \phi<2 \pi$. We solve the equation $y^{n}=e^{i \phi}$ (say in \mathbb{C}): we must have $|y|=1$ (thus all solutions in \mathbb{C} are solutions in U), and if ψ is the polar angle of y, where $0 \leq \psi<2 \pi$, we must have that $n \psi-\phi$ is a multiple of 2π. There are n possible values for ψ : $\phi / n, \phi / n+2 \pi / n, \ldots, \phi / n+(n-1) \cdot 2 \pi / n$. Thus the equation $y^{n}=x^{n}$ has exactly n solutions in U, i.e. S has cardinality n.
4.
(7 points)
Recall that $U_{n}=\left\{z \in \mathbb{C} \mid z^{n}=1\right\}$ for $n \in \mathbb{Z}^{+}$is a group under multiplication.
Find all subgroups of the group U_{70} and draw a subgroup diagram. (Lines of the diagram are allowed to cross each other.) Identify all subgroups that are equal to U_{n} for some n.

Solution: For $n \in \mathbb{Z}^{+}$, we have that U_{n} is a cyclic group of order n with generator $\zeta_{n}=e^{\frac{2 \pi i}{n}} . U_{70}$ is a cyclic group of order 70 with generator ζ_{70}. By the theorem about
subgroups of finite cyclic groups we proved in class, the subgroups of U_{70} are the groups $\left\langle\zeta_{70}^{d}\right\rangle$, where d is a divisor of 70 . The divisors of 70 are: $1,2,5,7,10,14,35,70$. So we get subgroups $\left\langle\zeta_{70}^{1}\right\rangle=U_{70},\left\langle\zeta_{70}^{2}\right\rangle=\left\langle\zeta_{35}\right\rangle=U_{35}$, since $\zeta_{70}^{2}=\zeta_{35},\left\langle\zeta_{70}^{5}\right\rangle=U_{14}$, since $\zeta_{70}^{5}=\zeta_{14}$, $\left\langle\zeta_{70}^{7}\right\rangle=U_{10}$, since $\zeta_{70}^{7}=\zeta_{10},\left\langle\zeta_{70}^{10}\right\rangle=U_{7},\left\langle\zeta_{70}^{14}\right\rangle=U_{5},\left\langle\zeta_{70}^{35}\right\rangle=U_{2},\left\langle\zeta_{70}^{70}\right\rangle=U_{1}$. The subgroup diagram is:

5. (4 +4 points)
a) Show that $\mathbb{Z}\left[\frac{1}{2}\right]=\left\{\left.\frac{p}{q} \right\rvert\, p \in \mathbb{Z}, q=2^{n}\right.$ for some $\left.n \in \mathbb{Z}^{+}\right\}$is a subgroup of \mathbb{Q} under addition.
Solution: $\mathbb{Z}\left[\frac{1}{2}\right]$ is closed under addition since for all $p_{1}, p_{2} \in \mathbb{Z}, n_{1}, n_{2} \in \mathbb{Z}^{+}$, we have

$$
\frac{p_{1}}{2^{n_{1}}}+\frac{p_{1}}{2^{n_{1}}}=\frac{p_{1} \cdot 2^{n_{2}}+p_{2} \cdot 2^{n_{1}}}{2^{n_{1}+n_{2}}} \in \mathbb{Z}\left[\frac{1}{2}\right] .
$$

The identity element of \mathbb{Q} is $0=\frac{0}{2} \in H$. If $\frac{p}{2^{n}} \in \mathbb{Z}\left[\frac{1}{2}\right]$, where $p \in \mathbb{Z}, n \in \mathbb{Z}^{+}$, then its inverse in \mathbb{Q} is $\frac{-p}{2^{n}} \in \mathbb{Z}\left[\frac{1}{2}\right]$. By the theorem about characterizing properties of subgroups we proved in class, $\mathbb{Z}\left[\frac{1}{2}\right]$ is a subgroup of \mathbb{Q} under addition.
b) Show that $\mathbb{Z}\left[\frac{1}{2}\right]$ is not a finitely generated abelian group.

Solution: Let $S=\left\{a_{1}=\frac{p_{1}}{2^{n_{1}}}, \ldots a_{m}=\frac{p_{m}}{2^{n_{m}}}\right\}$ be a finite subset of $\mathbb{Z}\left[\frac{1}{2}\right]$. The subgroup H generated by S consists (by transferring the theorem in class into the additive notation that we use here) of all finite sums of integer multiples of elements of S, that is $H=\left\{\lambda_{1} a_{1}+\ldots+\lambda_{m} a_{m} \mid \lambda_{i} \in \mathbb{Z}\right\}$. But all elements in this set are integer multiples of $q=\frac{1}{2^{n_{1}+\cdots+n_{m}}}$. This implies that $\frac{q}{2}=\frac{1}{2^{n_{1}+\cdots+n_{m+1}}}$ is contained in $\mathbb{Z}\left[\frac{1}{2}\right]$, but not in H. It follows that no finite set S generates $\mathbb{Z}\left[\frac{1}{2}\right]$.
6.

$$
(4+4+4 \text { points })
$$

Let G be a group. An isomorphism $f: G \rightarrow G$ is called an automorphism of G. The set of all automorphisms of G is denoted by $\operatorname{Aut}(G)$. It is a group under composition of functions (you do not have to prove this).
a) Show that there is an element $f \in \operatorname{Aut}\left(\mathbb{Z}_{8}\right)$ (i.e. an isomorphism $\left.f: \mathbb{Z}_{8} \rightarrow \mathbb{Z}_{8}\right)$ such that $f(1)=5$.

Solution: (If such an isomorphism f exists, it must be bijective, and we must have $f\left(m+{ }_{8} n\right)=f(m)+_{8} f(n)$ for all $m, n \in \mathbb{Z}_{8}$. So for example one must have $f(2)=$ $f\left(1+{ }_{8} 1\right)=f(1)+_{8} f(1)=5+_{8} 5=2$, and $f(3)=f\left(2+_{8} 1\right)=\ldots$ and so on. One may find the formula $f(n)=5+_{8} \ldots+_{8} 5$, with n summands, in that way. We also proved that an isomorphism sends identity element to identity element. So it must map 0 to 0 .)
We have $\operatorname{gcd}(5,8)=1$, so 5 is a generator for \mathbb{Z}_{8}, so \mathbb{Z}_{8} consists of the elements $0,5,5+{ }_{8} 5,5+{ }_{8} 5+85, \ldots 5+85+{ }_{8} 5+_{8} 5+{ }_{8} 5+{ }_{8} 5+{ }_{8} 5$. (The sum modulo 8 with 8 summands equal to 5 is 0 .) The map $f: \mathbb{Z}_{8} \rightarrow \mathbb{Z}_{8}$ defined by $f(n)=5+{ }_{8} \ldots+{ }_{8} 5$, with n summands, is an isomorphism. (It is obviously well-defined, surjective and injective. We have $f\left(m+{ }_{8} n\right)=f(m)+{ }_{8} f(n)$ for all $m, n \in \mathbb{Z}_{8}$ since the sum with 8 summands is 0 , so the sum with $m+8 n$ summands equals the sum with $m+n$ summands.)
One could also refer to the proof that every finite cyclic group $G=\langle a\rangle$ is isomorphic to \mathbb{Z}_{n} : the proof constructs an isomorphism $\mathbb{Z}_{n} \rightarrow G$ which sends $1 \in \mathbb{Z}_{n}$ to $a \in G$ (or the inverse isomorphism, to be exact). Now we put $G=\mathbb{Z}_{8}, a=5$ and we are done.
b) What is the order of $\operatorname{Aut}\left(\mathbb{Z}_{8}\right)$? (Justify your answer.)

Solution: As we have seen in part a) (or also in the last problem of homework 4:) For each $i \in \mathbb{Z}_{8}$, there exists at most one isomorphism f s.t. $f(1)=i$: because of the homomorphism property, one must have $f(n)=i+{ }_{8} \ldots+{ }_{8} i$, with n summands. Since $\mathbb{Z}_{8}=\langle 1\rangle=\langle 3\rangle=\langle 5\rangle=\langle 7\rangle$, we can do the same steps as in part a) to construct four isomorphisms $f_{1}, f_{3}, f_{5}, f_{7}$ such that $f_{i}(1)=i$, and they are given by $f_{i}(n)=i+{ }_{8} \ldots+{ }_{8} i$, with n summands.
The candidates for an isomorphism $f_{i}(n)=i+{ }_{8} \ldots+{ }_{8} i$, where $i=f_{i}(1)$ is even, do all send 0 to 0 and 4 to 0 , so there are no isomorphisms where $f(1)$ is even. So $\operatorname{Aut}\left(\mathbb{Z}_{8}\right)=\left\{f_{1}, f_{3}, f_{5}, f_{7}\right\}$, i.e. $\operatorname{Aut}\left(\mathbb{Z}_{8}\right)$ has order 4.
c) Show that $\operatorname{Aut}\left(\mathbb{Z}_{8}\right)$ is isomorphic to a group that you have seen in class.

Solution: We have seen in class that all groups of four elements are either isomorphic to \mathbb{Z}_{4} or to the Klein 4 -group V.
$f_{1}=i d$ is the identity function, i.e. the identity element of the group. But since $\operatorname{Aut}\left(\mathbb{Z}_{8}\right)$ is a group, it is closed under composition, so we must have $f_{3} \circ f_{3}=f_{i}$ for some $i \in\{1,3,5,7\}$. We compute $f_{3}\left(f_{3}(1)\right)=f_{3}(3)=3+{ }_{8} 3+_{8} 3=1$, so we must have $f_{3} \circ f_{3}=f_{1}$. But similarly, we compute that (we could compute the whole group table of $\left.\operatorname{Aut}\left(\mathbb{Z}_{8}\right)\right) f_{1} \circ f_{1}=f_{3} \circ f_{3}=f_{5} \circ f_{5}=f_{7} \circ f_{7}=f_{1}$, so each element of the group is its own inverse. Therefore the group $\operatorname{Aut}\left(\mathbb{Z}_{8}\right)$ must be isomorphic to V (and not to \mathbb{Z}_{4}).

