Midterm 2

Write your name and SID on the front of your blue book. All answers and work should also be written in your blue book. You must JUSTIFY your answers, so show your work. Partial credit will be awarded even if answers are incorrect. No notes, books, or calculators. Good luck!

1. (20 pts.) Let $A=\left(\begin{array}{rrr}1 & 3 & 3 \\ 6 & 4 & 6 \\ -3 & -3 & -5\end{array}\right)$. The characteristic polynomial of A is $f(t)=-\left(t^{3}-12 t-16\right)$.
a. (5 pts.) Factor $f(t)$.

SOLUTION: $f(t)=-(t-4)(t+2)^{2}$.
b. (15 pts.) Find an invertible matrix Q and a diagonal matrix D such that $D=Q^{-1} A Q$. You do not need to compute Q^{-1}.
SOLUTION: One possible pair, (Q, D), is $Q=\left(\begin{array}{rrr}1 & 1 & 1 \\ 2 & -1 & 0 \\ -1 & 0 & -1\end{array}\right)$ and $D=\left(\begin{array}{rrr}4 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & -2\end{array}\right)$.
2. (20 pts.)
a.(7 pts.) Suppose the characteristic polynomial of A is $f(t)=t^{4}-1$. Use the Cayley-Hamilton Theorem to express $A^{10}+A^{8}$ as a linear combination of I, A, A^{2}, A^{3}.

SOLUTION: BY the C-H Theorem, $A^{4}=I$. Then $A^{10}=\left(A^{4}\right)^{2} A^{2}=I A^{2}=A^{2}$ and $A^{8}=I$. Thus $A^{10}+A^{8}=A^{2}+I$.
b. (6 pts.) Suppose T has characteristic polynomial $f(t)=(-1)^{n}\left[t^{n-2}\left(t-\lambda_{2}\right)\left(t-\lambda_{3}\right)\right]$, where $\lambda_{2} \neq \lambda_{3}$ and $\lambda_{i} \neq 0$. Suppose further that $\operatorname{dim} \mathrm{N}(T)=n-2$. Is T diagonalizable? Justify your answer.

SOLUTION: Since $N(T)=E_{0}$ we have $\operatorname{dim} E_{0}=n-2$ Since λ_{i} is an eigenvalue of multiplicity one for $i \in\{2,3\}$, we must have $\operatorname{dim} E_{\lambda_{2}}=\operatorname{dim} E_{\lambda_{3}}=1$. This means that $\operatorname{dim} E_{0}+$ $\operatorname{dim} E_{\lambda_{2}}+\operatorname{dim} E_{\lambda_{3}}=(n-2)+1+1=n$. Thus T is diagonalizable.
c.(7 pts.) Suppose $A \in \mathrm{M}_{n \times n}(\mathbb{C})$ satisfies $A^{k}=0_{n \times n}$ for some $k \geq 0$. Show that A has exactly one eigenvalue. What is it? Prove that in fact $A^{n}=0_{n \times n}$. (Note that the original k may have been larger than n.)
SOLUTION: Since A is a complex matrix, it is guaranteed to have at least one eigenvalue. Suppose $A v=\lambda v$ with $v \neq 0$. Then $A^{k} v=\lambda^{k} v$, as we proved in a hw exercise. But $A^{k}=0_{n}$. Thus $0=\lambda^{k} v$. Since $v \neq 0$, we must have $\lambda=0$. As A only has 0 as an eigenvalue, its characteristic polynomial is $(-1) t^{n}$. It now follows from the C-H Theorem that $(-1)^{n} A^{n}=A^{n}=0_{n}$.
3. (20 pts.) Let V be an n-dimensional space and suppose $W_{1}, W_{2} \subseteq V$ are two subspaces such that $n=\operatorname{dim} W_{1}+\operatorname{dim} W_{2}$.
a. (10 pts.) Prove that $V=W_{1} \oplus W_{2}$ if and only if $W_{1} \cap W_{2}=\{0\}$.

SOLUTION: The (\Rightarrow) direction follows simply from the definition of direct sum. Suppose $W_{1} \cap W_{2}=\{0\}$. Let $\beta_{1}=\left\{v_{1}, \ldots, v_{k}\right\}$ and $\beta_{2}=\left\{v_{1}^{\prime}, \ldots, v_{n-k}^{\prime}\right\}$ be bases for W_{1} and W_{2}
respectively. Note that my indexing uses the fact that $\sum \operatorname{dim} W_{i}=n$. I claim $\beta=\beta_{1} \cup \beta_{2}$ is a basis, whence the result follows from Theorem 5.10. Since β contains n elements, it is enough to show it is linearly independent. Suppose $\sum_{i=1}^{k} a_{i} v_{i}+\sum_{j=1}^{n-k} b_{j} v_{j}^{\prime}=0$. Let $w=\sum a_{i} v_{i} \in W_{1}$ and $w^{\prime}=\sum b_{j} v_{j} \in W_{2}$. Then $w_{1}+w_{2}=0$ implies that $w_{1}=-w_{2} \in W_{2}$. But then $w_{1} \in W_{1} \cap W_{2}=\{0\}$. Thus $w_{1}=w_{2}=0$. Since the β_{i} are bases, we must have $a_{i}=b_{j}=0$ for all i, j.
b. (10 pts.) Now consider $T \in \mathcal{L}(V)$. Recall that $\mathrm{N}(T)$ and $\mathrm{R}(T)$ are T-invariant subspaces. Prove that $V=\mathrm{N}(T) \oplus \mathrm{R}(T)$ if and only if $T_{\mathrm{R}(T)}$, the restriction of T to $\mathrm{R}(T)$, is invertible.

SOLUTION: Note first that $\operatorname{dim} \mathrm{N}(T)+\operatorname{dim} \mathrm{R}(T)=n$ by the Dimension Theorem. Thus by part a., $V=\mathrm{N}(T) \oplus \mathrm{R}(T)$ if and only if $\mathrm{N}(T) \cap \mathrm{R}(T)=\{0\}$. This is true if and only if given $v \in \mathrm{R}(T), T(v)=0 \Rightarrow v=0$ if and only if $T_{\mathrm{R}(T)}$ is one-to-one if and only $T_{\mathrm{R}(T)}$ is invertible.

