Math 54. Sample Answers to Second Midterm

As before, there were two versions of the midterm, distinguishable by the fact that one version gave the starting time as 9:30, and the other as 9:40. The answers given here refer to the " $9: 30$ " version. The answer for the " $9: 40$ " version is briefly given if necessary, but without details, since they are similar to the details for the answers given here.

1. (12 points) A chemist solves a nonhomogeneous system of seven linear equations in ten unknowns and finds that four of the unknowns are free variables. Can the chemist be certain that, if the right-hand sides of the equations are changed, the new nonhomogeneous linear system will have a solution? Explain.

Let A be the coefficient matrix of the linear system. It is a 7×10 matrix, and we are given that $\operatorname{dim} \operatorname{Nul} A=4$. By the Rank Theorem, which says that

$$
\operatorname{rank} A+\operatorname{dim} \operatorname{Nul} A=10,
$$

it follows that $\operatorname{rank} A=6$. This is the dimension of $\operatorname{Col} A$. Since $\operatorname{Col} A$ is not all of \mathbb{R}^{7} (where \vec{b} lives), the system $A \vec{x}=\vec{b}$ is not consistent for all \vec{b} (Theorem 4 on page 43).
2. (21 points) The sets

$$
\mathcal{B}=\left\{\left[\begin{array}{l}
5 \\
0 \\
5
\end{array}\right],\left[\begin{array}{l}
4 \\
1 \\
3
\end{array}\right]\right\} \quad \text { and } \quad \mathcal{C}=\left\{\left[\begin{array}{l}
3 \\
2 \\
1
\end{array}\right],\left[\begin{array}{c}
1 \\
-1 \\
2
\end{array}\right]\right\}
$$

are bases of a vector subspace V of \mathbb{R}^{3}.
(a). Find $\underset{\mathcal{C} \leftarrow \mathcal{B}}{P}$.

The columns of $\underset{\mathcal{C} \leftarrow \mathcal{B}}{P}$ are the coordinate vectors $\left[\vec{b}_{1}\right]_{\mathcal{C}}$ and $\left[\vec{b}_{2}\right]_{\mathcal{C}}$, where \vec{b}_{1} and \vec{b}_{2} are the vectors in \mathcal{B}. To find $\left[\vec{b}_{1}\right]_{\mathcal{C}}$, solve for the weights in

$$
x_{1}\left[\begin{array}{l}
3 \\
2 \\
1
\end{array}\right]+x_{2}\left[\begin{array}{c}
1 \\
-1 \\
2
\end{array}\right]=\left[\begin{array}{l}
5 \\
0 \\
5
\end{array}\right]
$$

by row reducing the augmented matrix of the linear system:

$$
\left[\begin{array}{ccc}
3 & 1 & 5 \\
2 & -1 & 0 \\
1 & 2 & 5
\end{array}\right] \rightsquigarrow\left[\begin{array}{ccc}
1 & 2 & 5 \\
2 & -1 & 0 \\
3 & 1 & 5
\end{array}\right] \rightsquigarrow\left[\begin{array}{ccc}
1 & 2 & 5 \\
0 & -5 & -10 \\
0 & -5 & -10
\end{array}\right] \rightsquigarrow\left[\begin{array}{lll}
1 & 2 & 5 \\
0 & 1 & 2 \\
0 & 0 & 0
\end{array}\right] \rightsquigarrow\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 2 \\
0 & 0 & 0
\end{array}\right],
$$

2
so $\left[\vec{b}_{1}\right]_{\mathcal{C}}=\left[\begin{array}{l}1 \\ 2\end{array}\right]$.
Similarly, to find $\left[\vec{b}_{2}\right]_{\mathcal{C}}$, solve for the weights in

$$
x_{1}\left[\begin{array}{l}
3 \\
2 \\
1
\end{array}\right]+x_{2}\left[\begin{array}{c}
1 \\
-1 \\
2
\end{array}\right]=\left[\begin{array}{l}
4 \\
1 \\
3
\end{array}\right]
$$

by row reducing the augmented matrix

$$
\left[\begin{array}{ccc}
3 & 1 & 4 \\
2 & -1 & 1 \\
1 & 2 & 3
\end{array}\right] \rightsquigarrow\left[\begin{array}{ccc}
1 & 2 & 3 \\
2 & -1 & 1 \\
3 & 1 & 4
\end{array}\right] \rightsquigarrow\left[\begin{array}{ccc}
1 & 2 & 3 \\
0 & -5 & -5 \\
0 & -5 & -5
\end{array}\right] \rightsquigarrow\left[\begin{array}{lll}
1 & 2 & 3 \\
0 & 1 & 1 \\
0 & 0 & 0
\end{array}\right] \rightsquigarrow\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 1 \\
0 & 0 & 0
\end{array}\right],
$$

so $\left[\vec{b}_{2}\right]_{\mathcal{C}}=\left[\begin{array}{l}1 \\ 1\end{array}\right]$.
Therefore $\underset{\mathcal{C} \leftarrow \mathcal{B}}{P}=\left[\begin{array}{ll}1 & 1 \\ 2 & 1\end{array}\right]$.
(b). Find $\underset{\mathcal{B} \leftarrow \mathcal{C}}{P}$.

We have

$$
\underset{\mathcal{B} \leftarrow \mathcal{C}}{P}=\underset{\mathcal{C} \leftarrow \mathcal{B}}{P^{-1}}=\left[\begin{array}{ll}
1 & 1 \\
2 & 1
\end{array}\right]^{-1}=-\left[\begin{array}{cc}
1 & -1 \\
-2 & 1
\end{array}\right]=\left[\begin{array}{cc}
-1 & 1 \\
2 & -1
\end{array}\right]
$$

(by the formula for the inverse of a 2×2 matrix).
(c). If $T: V \rightarrow V$ is a linear transformation whose \mathcal{B}-matrix is $[T]_{\mathcal{B}}=\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]$, then find $[T]_{\mathcal{C}}$.

For this part you may leave the answer as a product of matrices and inverses of matrices (i.e., you do not need to carry out any matrix multiplications or inverses).

We want a matrix M satisfying $[T(\vec{x})]_{\mathcal{C}}=M[\vec{x}]_{\mathcal{C}}$ for all $\vec{x} \in V$. We have

$$
[T(\vec{x})]_{\mathcal{C}}=\underset{\mathcal{C} \leftarrow \mathcal{B}}{P}[T(\vec{x})]_{\mathcal{B}}=\underset{\mathcal{C} \leftarrow \mathcal{B}}{P}[T]_{\mathcal{B}}[\vec{x}]_{\mathcal{B}}={ }_{\mathcal{C} \leftarrow \mathcal{B}}^{P}[T]_{\mathcal{B}} P \leftarrow \mathcal{C} \text { P }[\vec{x}]_{\mathcal{C}},
$$

and therefore the answer is

$$
M=\underset{\mathcal{C} \leftarrow \mathcal{B}}{P}[T]_{\mathcal{B}} \underset{\mathcal{B} \leftarrow \mathcal{C}}{P}=\left[\begin{array}{ll}
1 & 1 \\
2 & 1
\end{array}\right]\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right]\left[\begin{array}{ll}
1 & 1 \\
2 & 1
\end{array}\right]^{-1} .
$$

3. (15 points) For each of the following matrices, either show that it can be diagonalized, or that it can't be diagonalized.
(a). $\left[\begin{array}{lll}1 & 2 & 3 \\ 0 & 2 & 3 \\ 0 & 0 & 3\end{array}\right]$

This is an upper triangular matrix, so its eigenvalues are the diagonal entries: $1,2,3$. Since they are distinct, the matrix is diagonalizable.
(b). $\left[\begin{array}{lll}1 & 0 & 0 \\ 2 & 1 & 0 \\ 3 & 2 & 1\end{array}\right]$

Again, since the matrix (call it A) is lower triangular, the eigenvalues are the diagonal entries. However, now the eigenvalues are all the same: $\lambda=1$. The eigenspace is the null space of $A-\lambda I=A-I=\left[\begin{array}{lll}0 & 0 & 0 \\ 2 & 0 & 0 \\ 3 & 2 & 0\end{array}\right]$. This eigenspace has dimension 1. (The matrix has two linearly independent (nonzero) columns, so its rank is 2. By the rank theorem, $\operatorname{dim} \operatorname{Nul} A=1$.) Since there are not enough linearly independent eigenvectors to form a basis for \mathbb{R}^{3}, the matrix is not diagonalizable.
(For the 9:40 exam, the matrices were the transposes of the matrices here, and were interchanged.)
4. (15 points) A 5×5 matrix A has characteristic polynomial $-\lambda^{3}(\lambda-1)(\lambda-3)$.
(a). What values can $\operatorname{dim} \operatorname{Nul} A$ have?

The null space of the matrix is the eigenspace for the eigenvalue $\lambda=0$. Since this is a triple eigenvalue, the null space can have dimension 1,2 , or 3 .
(b). For each value n you gave in part (a), answer the following question:

If A has the above characteristic polynomial, and if $\operatorname{dim} \operatorname{Nul} A=n$, then is A always diagonalizable, never diagonalizable, or sometimes diagonalizable (depending on the particular matrix A)? Explain.

If $n=1$ or $n=2$, the matrix is not diagonalizable, since there would be at most $n+2<5$ linearly independent eigenvectors. (The eigenspaces for $\lambda=1$ and $\lambda=3$ always have dimension 1 , since these are not multiple eigenvalues.)

If $n=3$ then the matrix is always diagonalizable, since then there would be five linearly independent eigenvectors.

4
5. (22 points) Let $\vec{v}_{1}=\left[\begin{array}{l}1 \\ 3 \\ 2 \\ 1\end{array}\right], \vec{v}_{2}=\left[\begin{array}{l}2 \\ 2 \\ 2 \\ 3\end{array}\right]$, and $\vec{v}_{3}=\left[\begin{array}{l}1 \\ 9 \\ 5 \\ 7\end{array}\right]$.
(a). Let $W=\operatorname{Span}\left\{\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}\right\}$. Use the Gram-Schmidt process to find an orthogonal basis for W.

An orthogonal basis is $\left\{\vec{w}_{1}, \vec{w}_{2}, \vec{w}_{3}\right\}$, where

$$
\begin{aligned}
& \vec{w}_{1}=\vec{v}_{1}=\left[\begin{array}{l}
1 \\
3 \\
2 \\
1
\end{array}\right] ; \\
& \vec{w}_{2}=\vec{v}_{2}-\frac{\vec{v}_{2} \cdot \vec{w}_{1}}{\vec{w}_{1} \cdot \vec{w}_{1}} \vec{w}_{1}=\left[\begin{array}{l}
2 \\
2 \\
2 \\
3
\end{array}\right]-\frac{15}{15}\left[\begin{array}{l}
1 \\
3 \\
2 \\
1
\end{array}\right]=\left[\begin{array}{c}
1 \\
-1 \\
0 \\
2
\end{array}\right] ; \\
& \vec{w}_{3}=\vec{v}_{3}-\frac{\vec{v}_{3} \cdot \vec{w}_{1}}{\vec{w}_{1} \cdot \vec{w}_{1}} \vec{w}_{1}-\frac{\vec{v}_{3} \cdot \vec{w}_{2}}{\vec{w}_{2} \cdot \vec{w}_{2}} \vec{w}_{2}=\left[\begin{array}{l}
1 \\
9 \\
5 \\
7
\end{array}\right]-\frac{45}{15}\left[\begin{array}{l}
1 \\
3 \\
2 \\
1
\end{array}\right]-\frac{6}{6}\left[\begin{array}{c}
1 \\
-1 \\
0 \\
2
\end{array}\right]=\left[\begin{array}{c}
-3 \\
1 \\
-1 \\
2
\end{array}\right] .
\end{aligned}
$$

(b). Let $V=\operatorname{Span}\left\{\vec{v}_{1}, \vec{v}_{2}\right\}$. Find the vector in V closest to \vec{v}_{3}.

This is

$$
\operatorname{proj}_{V} \vec{v}_{3}=\frac{\overrightarrow{\vec{v}}_{3} \cdot \vec{w}_{1}}{\vec{w}_{1} \cdot \vec{w}_{1}} \vec{w}_{1}+\frac{\vec{v}_{3} \cdot \vec{w}_{2}}{\vec{w}_{2} \cdot \vec{w}_{2}} \vec{w}_{2}=\frac{45}{15}\left[\begin{array}{l}
1 \\
3 \\
2 \\
1
\end{array}\right]+\frac{6}{6}\left[\begin{array}{c}
1 \\
-1 \\
0 \\
2
\end{array}\right]=\left[\begin{array}{l}
4 \\
8 \\
6 \\
5
\end{array}\right] .
$$

(You may also recognize this vector as $\vec{v}_{3}-\vec{w}_{3}$.)
(c). Find the distance between V and \vec{v}_{3}.

This distance is the distance

$$
\left\|\operatorname{proj}_{V} \vec{v}_{3}-\vec{v}_{3}\right\|=\left\|\left[\begin{array}{l}
4 \\
8 \\
6 \\
5
\end{array}\right]-\left[\begin{array}{l}
1 \\
9 \\
5 \\
7
\end{array}\right]\right\|=\left\|\left[\begin{array}{c}
3 \\
-1 \\
1 \\
-2
\end{array}\right]\right\|=\sqrt{9+1+1+4}=\sqrt{15} .
$$

(Again, it is no coincidence that this is the length of $-\vec{w}_{3}$.)
6. (15 points) Use methods from Math 54 to find an upper bound for the integral

$$
\int_{0}^{\pi / 2} \sqrt{x \sin x} d x
$$

Your answer may be an algebraic formula involving π and square roots, but not involving integrals, limits, or infinite sums.
[Hint: You may recall facts about integrals from homework problems and examples in the book.]

The formula

$$
\langle f, g\rangle=\int_{0}^{\pi / 2} f(x) g(x) d x
$$

defines an inner product on the vector space $C[0, \pi / 2]$ of continuous functions on the closed interval $[0, \pi / 2]$ (see Example 7 or Exercises 21 and 23 in Section 6.7). The integral in question can then be expressed in terms of this inner product when $f(x)=\sqrt{x}$ and $g(x)=\sqrt{\sin x}$. By applying the Cauchy-Schwarz inequality $|\langle f, g\rangle| \leq\|f\|\|g\|$, we have

$$
\int_{0}^{\pi / 2} \sqrt{x \sin x} d x=\langle\sqrt{x}, \sqrt{\sin x}\rangle \leq\|\sqrt{x}\|\|\sqrt{\sin x}\|
$$

We have

$$
\|\sqrt{x}\|=\sqrt{\int_{0}^{\pi / 2} \sqrt{x} \cdot \sqrt{x} d x}=\sqrt{\int_{0}^{\pi / 2} x d x}=\sqrt{\left.\frac{x^{2}}{2}\right|_{0} ^{\pi / 2}}=\sqrt{\frac{\pi^{2} / 4}{2}}=\frac{\pi}{\sqrt{8}}
$$

and similarly

$$
\|\sqrt{\sin x}\|=\sqrt{\int_{0}^{\pi / 2} \sin x d x}=\sqrt{-\left.\cos x\right|_{0} ^{\pi / 2}}=\sqrt{1}=1
$$

Therefore

$$
\int_{0}^{\pi / 2} \sqrt{x \sin x} d x \leq \frac{\pi}{\sqrt{8}} \cdot 1=\frac{\pi}{\sqrt{8}} .
$$

For the " $9: 40$ " exam, the answer came to $\frac{\pi}{\sqrt{2}} \cdot \sqrt{2}=\pi$.

