Midterm Exam 1

Last name	First name	SID

Rules.

- You have two hours to complete this exam.
- There are 100 points for this exam.
- The exam is closed-book and closed-notes; calculators, computing and communication devices are not permitted.
- However, one handwritten and not photocopied double-sided sheet of notes is allowed.
- Moreover, you receive, together with the exam paper, copies of Tables 4.2 and 5.2 of the course textbook.
- No form of collaboration between the students is allowed. If you are caught cheating, you may fail the course and face disciplinary consequences.

Please read the following remarks carefully.

- Show all work to get any partial credit.
- Take into account the points that may be earned for each problem when splitting your time between the problems.

Problem	Points earned	Points possible	Problem	Points earned	Points possible
Problem 1		40	Problem 2		30
Problem 3		30			
Total					

Problem 1 (Short questions.)

1. (a) 5 points

$$
\text { Given } x(t)=\left\{\begin{array}{lc}
t-2, & 2 \leq t<4 \\
2, & 4 \leq t<6 \\
0, & \text { otherwise }
\end{array}\right.
$$

Plot $x\left(1-\frac{t}{3}\right)$. Label your axes clearly and carefully!

1. (b) 5 points For the following system, with input $x[n]$ and output $y[n]$, circle whether the statements are true or false.

$$
y[n]=\sum_{k=-\infty}^{-2 n} 3 x[k]
$$

T F the system is linear
T F the system is time-invariant
T F the system is memoryless
T F the system is stable
T F the system is causal

1. (c) 7 points An iron bar is heated to the temperature 300 degrees Celsius and placed in a room with ambient temperature S degrees Celsius, where it is allowed to cool.
Every minute, the temperature of the bar decreases by an amount equal to 2% of the difference between the current temperature (at the start of that minute) and the ambient temperature. In the box below, write a difference equation for $T[n]$, the temperature of the bar after it has been in the room for n minutes, and give any relevant initial conditions.
2. (d) 4 points Find the correct real gains in the block diagram below so that the input and output are related by the complex difference equation:

$$
y[n]+(3-4 j) \cdot y[n-1]=e^{-j \pi / 2} x[n]
$$

1. (e) 6 points A signal $x(t)$ is the input to an LTI system with impulse response $h(t)=\frac{\sin (500 \pi t)}{\pi t}$. Which of the following signals could not be the output $y(t)$? (Circle your answer(s) and provide a brief explanation in the box below. No credit will be given for correct answers with incorrect reasoning.)

$$
\begin{aligned}
& y(t)=\cos (100 \pi t) \\
& y(t)=12 e^{j 300 \pi t} \\
& y(t)=\sin (50 \pi t) \cdot \cos (75 \pi t) \\
& y(t)=\sin (600 \pi t) \\
& y(t)=\sin (375 \pi t)
\end{aligned}
$$

\square

1. (f) 6 points Consider an LTI system with input $x[n]$ and output $y[n]$ that is implemented by the following block diagram

Find the frequency response $H\left(e^{j \Omega}\right)$ of this system.

$$
H\left(e^{j \Omega}\right)=
$$

1. (g) 7 points A discrete-time LTI system, with input $x[n]$ and output $y[n]$, has frequency response

$$
H\left(e^{j \Omega}\right)=\frac{1}{1+0.5 e^{-j \Omega}}
$$

The input signal $x[n]$ is periodic, with period $N=8$. The following figure shows the value of $x[n]$ over the interval $0 \leq n \leq 7$.

Let b_{k} denote the discrete-time Fourier series coefficients of $y[n]$. Compute the coefficient b_{4}.
\square

Problem 2 (CTFT)
Consider the signal

$$
x(t)=x_{1}(t)+x_{2}(t)
$$

where

$$
x_{1}(t)=\cos (20 \pi t) \text { and } x_{2}(t)=\frac{\sin \left(\frac{\pi}{2} t\right)}{\pi t}
$$

2. (a) 6 points Plot $x_{2}(t)$ from $-10 \leq t \leq 10$. Label your axes clearly and carefully!
\square
3. (b) 8 points Plot the continuous-time Fourier transform of $x(t)$. Label your axes clearly and carefully!
\square
4. (c) 8 points The signal $x(t)$ is now the input to an LTI system, whose frequency response $H(j \omega)$ is purely real and shown below.

Write an expression for the output of the LTI system, $y(t)$.

2. (d) 8 points Compute the energy $E_{Y}=\int_{-\infty}^{\infty}|y(t)|^{2} d t$ of $y(t)$ from part (c).

Problem 3 (Sampling)

3. (a) 5 points $\mathrm{x}(\mathrm{t})$ is sampled above its Nyquist rate at $\frac{1}{T}=40 \mathrm{kHz}$ to produce $x[n]$ whose spectrum, $X_{d}\left(e^{j \Omega}\right)$, is shown in the figure above. Plot $X(j \omega)$, the spectrum of $x(t)$, clearly labeling your axes.
\square
3. (b) 5 points For the same $x(t)$ as in part (a), suppose the A/D converter is now operated at $\frac{1}{T_{1}}=$ 160 kHz to produce $x_{1}[n]$. Plot the spectrum of $x_{1}[n]$.

3. (c) 6 points Draw a discrete-time system with input $x[n]$ and output $x_{1}[n]$ (where $x[n]$ and $x_{1}[n]$ are the signals from parts (a) and (b)). Give a brief justification of your answer to receive full credit.
\square

If $y[n]$ is the input to an ideal D / C running at $\frac{1}{T}=40 \mathrm{kHz}$, and $y[n]$ has the spectrum shown in the figure above, plot $Y(j \omega)$, the spectrum of $y(t)$.
\square

3. (e) 8 points

The signal $y[n]$ in part (d) is the input to a Zero-Order Hold circuit characterized by $\bar{y}_{a}(t)=\sum_{n=-\infty}^{\infty} y[n] p_{a}(t-n T)$, where $p_{a}(t)$ is shown above. Note that this ZOH is holding for $\frac{T}{2}$ seconds, rather than the classical T seconds. Plot the magnitude of the spectrum of $p(t)$ and the magnitude of the spectrum of $\bar{y}_{a}(t)$, both over the range $|\omega|<\frac{5 \pi}{T}$.

 \qquad

