PRINT NAME (Last, First):	Youlla
SIGN YOUR NAME:	
STUDENT ID #:	

# 1	# 2	# 3	# 4	SUBTOTAL
7	8	6	14	35

1	# 5	# 6	# 7	# 8	SUBTOTAL	TOTAL
					50	95
	15	10	21	4	50	85

Instructions:

- 1 Print and sign your name and enter your student ID number above.
- 2 Read the questions carefully.
- 3 Write your solution clearly.
- $4\,$ You must show your work to get full credit.
- 5 This exam has 8 questions worth 85 points, so you should proceed at approximately 1 point per minute.

Problem # 1 (1+2+2=5 points)

Consider the periodic voltage waveform v(t) shown below.

Find the following:

♦ Period

3 seconds

Period = 5 seculo

♦ DC Voltage

♦ RMS Voltage

RMS Voltage =
$$\sqrt{\frac{5}{3}}$$
 Vo

Problem # 2 (2+2+2+2=8 points)

Convert the following phasors to sinusoids. Assume the frequency is ω .

(a)
$$5\exp(j\pi/2)$$

Answer =
$$5\cos(\omega t + \Pi t)$$

- $5\sin(\omega t)$

(b)
$$3 + 4j$$

Answer =
$$3\cos(\omega t) - 4\sin(\omega t)$$

 $5(\cos(\omega t + 53.1^{\circ}).921$
 $5\sin(\omega t + 143.1^{\circ})$

Convert the following sinusoids to phasors.

(c)
$$3\cos(\omega t) + 4\sin(\omega t)$$

Answer =
$$3-4$$
 3^{+4}

(d)
$$\sqrt{2}\sin(\omega t - 45^\circ)$$

$$Answer = -1 - j$$

$$\sqrt{2} \left(-135^{\circ}\right)$$

$$=-j\sqrt{2}\left(\frac{1}{\sqrt{2}}-\frac{j}{\sqrt{2}}\right)$$

Problem # 3 (6 * 1 = 6 points)

Circle the most appropriate answers. Incorrect answers receive -1 points.

No explanations are necessary.

The internal resistance R of a practical current source is in series/ barallel with the source.

For a well-designed circuit with a practical current source, this internal resistance R should be much larger smaller than the load resistance.

A circuit element that requires an external power supply is called active

passive

We can cannot find the Thevenin equivalent of a circuit containing diodes.

The input resistance of an ammeter is very low

very big

An oscilloscope can easily be used not be used to measure magnetic field strength.

Problem # 4 (5+5+2+2=14 points)

A 10 volt battery with internal resistance R_1 is connected to a resistive load R_L . The voltage across the load is measured with a voltmeter whose internal resistance is R_2 .

(a) Draw a circuit diagram for this problem in the box below.

(b) Find an expression for the voltage recorded by the voltmeter in terms of R_1, R_2, R_L .

Problem # 5 (4+8+1+2=15 points)

(a) Consider the circuit shown here. Let \mathbb{I}_{in} and \mathbb{I}_{out} be the phasors of the input current I_{in} and the output current I_{out} respectively. Find \mathbb{I}_{out} in terms of R_1, R_2, L, C, ω and \mathbb{I}_{in} .

convert divider

4 pts

 $I_{out} =$

(b) With $R_1=1$ $K\Omega$, $R_2=5$ $k\Omega$, L=100 mH, C=3 μF , sketch the frequency response of the current magnitude gain from \mathbb{I}_{in} to \mathbb{I}_{out} . Use the log-log scale graph-paper supplied

WL

(c) Is this a low-pass or band-pass (circle your answer)

$$\begin{bmatrix}
\omega \\
\omega^2 + R_1^2
\end{bmatrix}$$

Problem # 6 (3 + 3 + 4 = 10 points)

Consider the circuit shown below.

Let V_a and V_b be the voltages at nodes a and b respectively.

Here, you will use the nodal method to find the voltage V_a .

Let the unknown quantities be the node voltages V_a , V_b and the current I.

(a) Write KCL at node a in terms of the unknown quantities only.

(b) Write KCL at node b in terms of the unknown quantities only.

KCL at node b:
$$\sqrt{A} - \sqrt{b} - \sqrt{b} - I = 0$$

(c) Solve for V_a . You will need one more equation here.

$$V_a = 5.5 \text{ with}$$

$$V_{b}+1=2V_{a}$$
 $V_{a}=\frac{11}{2}$

Problem # 7 (9+ 8 = 17 points)

Consider the circuit shown here. The source voltage $v_s(t)$ is given by:

$$v_s(t) = \left\{ egin{array}{ll} -4 \; ext{volts} & t \leq 0 \ 6 \; ext{volts} & t > 0 \end{array}
ight.$$

Here, $R_1=2k\Omega,\ R_2=2k\Omega,\ R_3=3k\Omega,\ C=2.5\mu F.$

The problem is to find the voltage $v_c(t)$ for t > 0.

(a) (4+4+3=11 points) Find the Thevenin equivalent for the circuit above. In other words, find the voltage $v_T(t)$ and the resistance R_T for the equivalent circuit shown below.

$$R_{T} = R_{3} + R_{1} N_{1} R_{2} v_{r}(t) \stackrel{+}{=} v_{c}(t)$$

$$= 3 + 1$$

$$= 4 \text{ k.} \Omega$$

$$Q t = 0 - V_{S} = -4$$

$$Vollinge divider $V_{T}(0-) = -2$$$

$$0 t = 0 + 0 + 0 = 6$$

$$v_T(t) = \begin{cases} -2 & \text{volts } t \leq 0 \\ 3 & \text{volts } t > 0 \end{cases}$$

$$R_T = 4 k$$

(b) (2 + 4 + 4 = 10 points) For the rest of the problem use the following values. These values are not correct but will enable you to finish the problem even if you made a mistake in part (a).

Values you should use:

$$v_{\scriptscriptstyle T}(t) = \left\{ \begin{array}{ll} -3 \; {\rm volts} & t \leq 0 \\ 5 \; {\rm volts} & t > 0 \end{array} \right. \qquad R_{\scriptscriptstyle T} = 6k\Omega$$

Find the time constant of the circuit. Find $v_C(t)$ for t>0. Sketch $v_C(t)$ on the graph below.

for
$$t > 0$$
, $v_c(t) =$

$$5 + (-3) = \frac{E/15}{5}$$

Problem #8 (4 points) You have two resistors R_1 and R_2 . Using these in various combinations you can make resistances of 4, 6, 12, and 18Ω .

Find R_1, R_2 .

$$R_2 = 1$$

