\qquad

SID

UNIVERSITY OF CALIFORNIA
 College of Engineering
 Department of Electrical Engineering and Computer Sciences

Final Exam

May 21, 2002

EECS 240
SPRING 2002

Show derivations and mark results with box around them. Erase or cross-out erroneous attempts. Mark your name and SID at the top of the exam sheet.

1. $[25$ points $]$ MOS S/H

The circuit below operates from a two-phase non-overlapping $0 \mathrm{~V} / 3 \mathrm{~V}$ clock. The switch $\Phi_{\text {llate }}$ opens shortly after the switch clocked with Φ_{1}.
a) Calculate the maximum value of W for which the charge injected onto C results in a sampling error of less than 50 mV . Assume fast gating and that the channel charge splits equally between source and drain.
b) Assuming that the source V_{i} has zero output resistance and $\mathrm{W}=10 \mu \mathrm{~m}$ (not the correct answer for a), what is the worst-case relative settling accuracy for $\mathrm{t}_{\text {settle }}=5 \mathrm{~ns}$ (ignore charge injection)?
Parameter: $\mathrm{V}_{\mathrm{THN}}=1 \mathrm{~V}, \mu_{\mathrm{n}} \mathrm{C}_{\mathrm{ox}}=200 \mu \mathrm{~A} / \mathrm{V}^{2}, \mathrm{C}_{\mathrm{ox}}=5 \mathrm{fF} / \mu \mathrm{m}^{2}, \mathrm{C}_{\mathrm{ol}}{ }^{\prime}=0.2 \mathrm{fF} / \mu \mathrm{m}, \mathrm{C}=1 \mathrm{pF}$.
Assume square-law and ignore the body-effect.

2. [25 points] The diagram below illustrates an alternative method for removing the feedforward zero arising from Miller compensation.
a) Find the value of $g_{m 3}$ that moves the zero of $\mathrm{V}_{\mathrm{o}}(\mathrm{s}) / \mathrm{V}_{\mathrm{i}}(\mathrm{s})$ to infinity as a function of $g_{m 1}, g_{m 2}, C_{1}, C_{2}$, and C_{c}. Simplify your result, but do not make assumptions regarding the relative value of component sizes.
b) Compare this approach to using a nulling resistor. List key advantages or disadvantages of the proposed solution.

3. [25 points] For the amplifier below find
a) The positive and negative slew-rate at the output.
b) The input referred offset if $\mathrm{I}_{2 \mathrm{a}}$ and $\mathrm{I}_{2 \mathrm{~b}}$ are mismatched by 10%; i.e.

$$
I_{2 a}-I_{2 b}=0.05\left(I_{2 a}+I_{2 b}\right) .
$$

Ignore all capacitors except those shown explicitly, transistor output impedance.
$\mathrm{g}_{\mathrm{m} 1}=1 \mathrm{mS}, \mathrm{g}_{\mathrm{m} 2}=5 \mathrm{mS}$. M2 and M3 can source very large currents.

4. [25 points] Find a reasonably simplified analytical expression for the low-frequency CMRR of the circuit below as a function of

$$
\begin{array}{ll}
R_{L}=\frac{R_{L 1}+R_{L 2}}{2} & R_{S}=\frac{R_{S 1}+R_{S 2}}{2} \\
\Delta R_{L}=R_{L 1}-R_{L 2} & \Delta R_{S}=R_{S 1}-R_{S 2}
\end{array}
$$

Assume $G_{m} R_{i} \gg 1$ for $\mathrm{i}=\mathrm{L}, \mathrm{S}, \mathrm{X}$.
What is the fraction of amplifiers having CMRR $=60 \mathrm{~dB}$ or better?
Parameter: $\mathrm{g}_{\mathrm{m} 1}=\mathrm{g}_{\mathrm{m} 2}=1 \mathrm{mS}, \mathrm{R}_{\mathrm{S}}=10 \mathrm{k} \Omega, \mathrm{R}_{\mathrm{X}}=10 \mathrm{k} \Omega, \mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega, \sigma_{\Delta \mathrm{R} / \mathrm{R}}=0.12 \%$.

