UNIVERSITY OF CALIFORNIA
 College of Engineering
 Department of Electrical Engineering and Computer Sciences

Final Exam

May 17, 2000

EECS 240

SPRING 2000

Show derivations and mark results with box around them. Erase or cross-out erroneous attempts. Mark your name and SID at the top of the exam sheet.

1. [30 points] All component values in the amplifiers below are identical except for $\mathrm{g}_{\mathrm{m} 2}$, which is adjusted for 63 degrees phase margin with unity-gain feedback. Calculate the ratio of $g_{m 2}$ for amplifier A to $g_{m 2}$ for amplifier B as a function of $C_{G S 1}, C_{G S 2}, C_{1}, C_{2}$, C_{L}. Treat all non-given parameters as ideal.

Amplifier A

Amplifier B
2. [15 points] The circuit below is "perfectly" symmetrical except for capacitor C_{x} that was inadvertently added due to a layout error. Calculate $\mathrm{V}_{\text {od }}$ for $\mathrm{V}_{\mathrm{id}}=0$ just before the end of phase Φ_{2}. All transistors are NMOS, the amplifier is ideal, and Φ_{1} and Φ_{2} are 0 V to 3 V non-overlapping clocks.

3. [30 points] The amplifier below is placed in a negative unity-gain feedback loop (i.e. $\mathrm{v}_{\mathrm{i}}=-\mathrm{v}_{\mathrm{o}}$).
a) Calculate the total output noise delivered to C_{2} in V-rms as a function of $\mathrm{g}_{\mathrm{m} 1}, \mathrm{~g}_{\mathrm{m} 3}$, $\mathrm{C}_{1}, \mathrm{C}_{2}$. Ignore the noise from M3, flicker noise and all capacitors except C_{1} and C_{2}. All devices operate in the forward-active region and $\mathrm{g}_{\mathrm{m}} \mathrm{r}_{\mathrm{o}} \gg 1$.
Note: M3 usually contributes more noise than M1 and M2 combined, but the math is a little too tedious to be appropriate for an exam: do only if you are done with all other problems.
b) Calculate the ratio $g_{m 1} / g_{m 3}$ required for a 63-degree phase margin with unity-gain feedback.

4. [25 points] All transistors in the circuit below operate in the forward active region, have nominally the same W/L, and are biased at $\mathrm{V}_{\mathrm{dsat}}=200 \mathrm{mV}$ (assume "square-law characteristics"). All devices are subject to the following random variations:
$\sigma_{\text {VTH } 0}=2 \mathrm{mV}, \sigma_{\Delta(\mathrm{W} / \mathrm{L}) /(\mathrm{W} / \mathrm{L})}=0.2 \%, \sigma_{\Delta R / \mathrm{R}}=0.5 \%, \sigma_{\gamma}=0.01 \mathrm{~V}^{1 / 2}$.
Device Parameters: $\Phi_{\mathrm{f}}=0.3 \mathrm{~V}, \lambda \rightarrow$ infinity.
a) Calculate the standard deviation of the input referred offset voltage, $\sigma_{V \text { os }}$ at low frequency for $\mathrm{V}_{\mathrm{X}}=0 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{X}}=3 \mathrm{~V}$. Assume that the mismatch is small compared to the mean for all parameters.
b) Assuming $\sigma_{V o s}=5 \mathrm{mV}$ (not the correct answer for part a), what is the fraction of amplifiers with an offset voltage less than 2 mV ?

