UNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering and Computer Sciences

B. E. BOSER

Final Exam May 17, 2000

EECS 240 SPRING 2000

Show derivations and mark results with box around them. Erase or cross-out erroneous attempts. Mark your name and SID at the top of the exam sheet.

1. [30 points] All component values in the amplifiers below are identical except for g_{m2} , which is adjusted for 63 degrees phase margin with unity-gain feedback. Calculate the ratio of g_{m2} for amplifier A to g_{m2} for amplifier B as a function of C_{GS1} , C_{GS2} , C_1 , C_2 , C_L . Treat all non-given parameters as ideal.

Amplifier A

Amplifier B

2. [15 points] The circuit below is "perfectly" symmetrical except for capacitor C_x that was inadvertently added due to a layout error. Calculate V_{od} for V_{id} =0 just before the end of phase Φ_2 . All transistors are NMOS, the amplifier is ideal, and Φ_1 and Φ_2 are 0V to 3V non-overlapping clocks.

3. [30 points] The amplifier below is placed in a negative unity-gain feedback loop (i.e. $v_i=-v_o$).

a) Calculate the total output noise delivered to C_2 in V-rms as a function of g_{m1} , g_{m3} , C_1 , C_2 . *Ignore the noise from M3*, flicker noise and all capacitors except C_1 and C_2 . All devices operate in the forward-active region and $g_m r_0 >> 1$.

Note: M3 usually contributes more noise than M1 and M2 combined, but the math is a little too tedious to be appropriate for an exam: do only if you are done with all other problems.

b) Calculate the ratio g_{m1}/g_{m3} required for a 63-degree phase margin with unity-gain feedback.

4. [25 points] All transistors in the circuit below operate in the forward active region, have nominally the same W/L, and are biased at V_{dsat}=200mV (assume "square-law characteristics"). All devices are subject to the following random variations: σ_{VTH0}=2mV, σ_{Δ(W/L)/(W/L)}=0.2%, σ_{ΔR/R}=0.5%, σ_γ=0.01V^{1/2}. Device Parameters: Φ_f=0.3V, λ→infinity.

a) Calculate the standard deviation of the input referred offset voltage, σ_{Vos} at low frequency for V_X=0V and V_X=3V. Assume that the mismatch is small compared to the mean for all parameters.

b) Assuming σ_{Vos} =5mV (not the correct answer for part a), what is the fraction of amplifiers with an offset voltage less than 2mV?

