
QUESTION BOOKLET
EE 126 Spring 2006 Midterm #2
Thursday, April 13, 11:10-12:30pm

DO NOT OPEN THIS QUESTION
BOOKLET UNTIL YOU ARE TOLD TO

DO SO
• You have 80 minutes to complete the midterm.

• The midterm consists of three problems, provided in the question booklet (THIS
BOOKLET), that are in no particular order of difficulty.

• Write your solution to each problem in the space provided in the solution booklet (THE
OTHER BOOKLET). Try to be neat! If we can’t read it, we can’t grade it.

• You may give an answer in the form of an arithmetic expression (sums, products,
ratios, factorials) that could be evaluated using a calculator. Expressions like

(
8
3

)
or∑5

k=0(1/2)k are also fine.

• A correct answer does not guarantee full credit and a wrong answer does not guarantee
loss of credit. You should concisely explain your reasoning and show all relevant work.
The grade on each problem is based on our judgment of your understanding as reflected
by what you have written.

• This is a closed-book exam except for two sheets of handwritten notes (one 8.5 × 11
page, both sides OR two pages, single side only), plus a calculator.



Problem 1: (12 points)

Diana the Daredevil is trying to break the world land-speed record using her rocket-
powered motorcycle. In order to do so, she needs to cover more than 500 yards in 10 seconds.

If her motorcycle has Z pounds of rocket fuel to start, then it travels a distance of
X = 50

√
Z yards in 10 seconds.

(a)(5 points) Suppose that the amount of rocket fuel Z is a random variable uniformly distributed
over [50, 150]. Compute the PDF and CDF of the distance X.

(b)(2 points) Compute the probability that Diana breaks the world record on any given trial.

(c)(5 points) Now suppose that Diana is allowed to take a total of n trials in order to try and break
the world record. (Here n is some fixed positive integer: i.e., n ∈ {1, 2, 3, . . .}). The
amount of rocket fuel at the start is independent from trial to trial. What is the smallest
possible integer n such that Diana has a better than 90% chance of breaking the world
record over the n trials?

Solution:

(a) (5pt) We first compute the CDF

FX(x) = P (X < x)
= P (50

√
(Z) < x)

= P

(
Z <

( x

50

)2
)

= =





0 if x < 50
√

50
( x

50)
2−50

100 if 50
√

50 ≤ x < 50
√

150
1 if x > 50

√
150

From which, we can derive the PDF

fX(x) =
d

dx
FX(x)

= =





0 if x < 50
√

50
x

503 if 50
√

50 ≤ x < 50
√

150
0 if x > 50

√
150

(b) (2pt) The probability that Diana breaks the world record is equal to the probability that her
motorcycle travels a distance greater than 500 yards in 10 seconds. So,

P (X > 500) = 1− FX(500) = 1− 1
2

=
1
2

2



(c) (5pt) The probability that Diana breaks the world record in n trials is equal to the probability
that the maximum distance traveled by her motorcycle in the n trials is greater than 500
yards in 10 seconds. Let Y denote the maximum distance traveled by her motorcycle.
We have that Y = max(X1, X2, . . . , Xn), where the Xi are independent and equally
distributed random variables.

FY (y) = P (Y < y)
= P (max(X1, X2, . . . , Xn) < y)
= P (X1 < y, X2 < y, . . . , Xn < y)
= P (X1 < y)n

= FX(y)n

P (Y > 500) = 1− FY (500) = 1− FX(500)n = 1− 1
2

n

and the minimum integer n for which 1− 1
2

n ≥ 0.9 is n = 4.
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Problem 2: (14 points)

A car dealer sells two models of cars, Ray and Sprint. A Ray car breaks after time R
days, where R is exponentially distributed with parameter λR. Similarly, a Sprint car breaks
after a random time S that is exponentially distributed with parameter λS . The random
variables R and S are independent.

When it is broken, a car is brought to the dealer for repair. The cost (in dollars) of
fixing a broken Ray is a random variable uniformly distributed over the interval [100, 300],
whereas the cost (in dollars) of fixing a broken Sprint is a random variable that is uniformly
distributed over [200, 400] dollars. The costs of fixing different cars are independent.

(a)(3 points) Given that that a Ray did not break in the first h days, what is the expected time
before the Ray breaks?

(b)(2 points) What is the probability that a Ray breaks before a Sprint?

(c)(4 points) Compute the mean lifetime of a Ray car given that Ray fails before Sprint.

(d)(5 points) On some day, the dealer has to fix NR cars of the Ray model and NS cars of the Sprint
model. Here NR and NS are independent Poisson random variables with parameters
µR and µS respectively. The dealer is interested in estimating the total revenue Z that
he will earn from repairing all the cars that day. Compute the expected value, variance,
and the moment generating function of Z.

Solution:

(a) (3pt) The expected time before the Ray breaks is given by

E(R|R > r) = r +
∫ ∞

0
P (R > r + h|R > r)dh

From the memoryless property of the exponential rand of variable P (R > r + h|R >
r) = P (R > h), we have

E(R|R > r) = r +
∫ ∞

0
P (R > h)dh = r +

∫ ∞

0
eλRhdh = r +

1
λR

(b) (2pt) The probability that a Ray breaks before a Sprint is given by

P (R ≤ S) = 1− P (R > S) = 1−
∫ ∞

0

∫ ∞

s
λRe−λRrλSe−λSsdrds

= 1−
∫ ∞

0
e−λRsλSe−λSsds

= 1− λS

λR + λS

=
λR

λR + λS
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(c) (4pt)

E(R|R < S) =
∫ ∞

0
P (R > r|R < S)dr

=
∫ ∞

0

P (r < R < S)
P (R < S)

dr

=
1

P (R < S)

∫ ∞

0

[∫ ∞

r

∫ S

r
λRe−λRvλSe−λSSdvdS

]
dr

=
1

P (R < S)

∫ ∞

0

[∫ ∞

r
[e−λRr − e−λRS ]λSe−λSSdS

]
dr

=
1

P (R < S)

∫ ∞

0

[
e−(λR+λS)r − λS

λR + λS
e−(λR+λS)r

]
dr

=
∫ ∞

0
e−(λR+λS)rdr

=
1

λR + λS

(d) (5pt) The moment generating function of random variable X which is uniformly distributed
over [a; b] is

MX(s) =
∫ b

a
esx 1

b− a
dx =

esb − esa

s(b− a)

The moment generating function of a Poisson random variable N with parameter µ is
MN (s) = eµ(es−1).

The total revenue Z can be expressed as the sum of independent random variables

Z =
NS∑

i=1

YSi +
NT∑

j=1

YTj

where the YSi are independent random variables uniformly distributed over [100; 300],
and the YTj are independent random variable uniformly distributed over [200; 400]. YSi

and YTj are independent for any i = 1, . . . , NS and j = 1, . . . , NT

By linearity of expectation, and law of iterated expextations, we obtain
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E[Z] = E




NS∑

i=1

YSi +
NT∑

j=1

YTj




= E

[
NS∑

i=1

YSi

]
+ E




NT∑

j=1

YTj




= E

[
E

[
NS∑

i=1

YSi|NS

]]
+ E


E




NT∑

j=1

YTj |NT







= 200E[NS ] + 300E[NT ]
= 200µS + 300µT

Similarly, using the independence property of the random variables

Var[Z] = Var

[
NS∑

i=1

YSi

]
+ Var




NT∑

j=1

YTj




= E

[
Var

[
NS∑

i=1

YSi|NS

]]
+ Var

[
E

[
NS∑

i=1

YSi|NS

]]
+ E


Var




NT∑

j=1

YTj |NT





 +

+Var


E




NT∑

j=1

YTj |NT







= Var[YS ]E[NS ] + (E[YS ])2Var[NS ] + Var[YT ]E[NT ] + (E[YT ])2Var[NT ]

=
2002

12
(µS + µT ) + 2002µS + 3002µT

The moment generating function of Z is
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MZ(s) = E[esZ ]

= E

[
e
s
�PNS

i=1 YSi+
PNT

j=1 YTj

�]
= E

[
es
PNS

i=1 YSi

]
E

[
es
PNT

j=1 YTj

]

= E
[
E

[
es
PNS

i=1 YSi |NS

]]
E

[
E

[
es
PNT

j=1 YTj |NT

]]

= E
[
MYS

(s)NS
]
E

[
MYT

(s)NT
]

=
[
MNS

(s)|es=MYS
(s)

] [
MNT

(s)|es=MYT
(s)

]

= eµS(MYS
(s)−1)eµT (MYT

(s)−1)

= e
µS

�
e300b−e100s

s200
−1

�
+µT

�
e400s−e200s

s200
−1
�
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Problem 3: (14 points)

George the Gambler is a good poker player: every round that he plays, he wins a random
amount Z of money, distributed as Z ∼ N(µ, σ2) with µ > 0. Every night, George goes to
the local poker club, and plays T = 1 + V rounds of poker, where V is a Poisson random
variable with parameter λ = 5. Let X be the total amount of money that George wins in a
given night.

(a)(2 points) In the absence of any further information, what is the best estimate of X? (Here “best”
is measured by the minimum mean-squared error.)

(b)(3 points) Suppose that you observe that George plays T = t rounds of poker (where t is some
positive integer). Now what is the best estimate of X (again measured in terms of
minimim mean-squared error)?

(c)(5 points) Now suppose that by peeking into George’s wallet at the end of the night, you make a
noisy observation Y of the amount of money X that he won—say of the form

Y = X + W

where W ∼ N(0, 1) is Gaussian noise independent of X. Compute the Bayes’ least
squares estimate of X based on observing T = t and Y = y. Also compute the linear
least squares estimate (LLSE) of X based on observing T = t and Y = y, and the error
variance of the LLSE.

(d)(4 points) Now suppose that you observe that {T ≤ 2} and Y = y. Compute the Bayes’ least
squares estimate of X based on this information.

Solution:

(a) (2pt) We know that the best estimate of X is E[X]. E[X] can be computed using the law od
iterated expectation: E[X] = E[E[X|T ]] = E[Tµ] = µ(1 + E[V ]) = µ(1 + 5) = 6µ

(b) (3pt) Observing T = t the best estimate of X becomes E[X|T = t]. When T = t, X =
Z1 + Z2 + . . . + Zt is a Gaussian random variable with mean tµ and variance tσ2. So,

E[X|T = t] = E[Z1 + Z2 + . . . + Zt] = tµ

(c) (5pt) Given that T = t, we know that X is a gaussian random variable. Y is a noisy
observation of X through gaussian noise. So, Y itself gaussian and X, Y are jointly
gaussian random variables. In this case, we know that the Bayes’ least square estimate
is the LLSE. We have that

E[X|T = t, Y = y] = tµ +
tσ2

tσ2 + 1
(y − tµ).

The error variance is (1− ρ2)σ2
X =

(
1− σ2

X

σ2
Y

)
σ2

X =
(
1− tσ2

tσ2+1

)
tσ2
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(d) (5pt) Using the conditional version of the law of total expectation, we have

E[X|T ≤ 2, Y = y] = E[E[X|T ≤ 2, Y = y, T ]|T ≤ 2, Y = y]

= E

[
Tµ +

Tσ2

Tσ2 + 1
(y − Tµ) |T ≤ 2, Y = y

]

=
2∑

i=1

P (T = i|T ≤ 2)
[
iµ +

iσ2

iσ2 + 1
(y − iµ)

]

where

P (T = i|T ≤ 2, Y = y) =
P (T = i, T ≤ 2, Y = y)

P (T ≤ 2, Y = y)

=
fY |T (y|T = i)P (T = i)

fY |T (y|T = 1)P (T = 1) + fY |T (y|T = 2)P (T = 2)

and

P (T = 1) = P (V = 0) = e−5

P (T = 2) = P (V = 1) = 5e−5

fY |T (y|T = i) = N (iµ, iσ2)

Using the law of total variance we obtain

Var[X|T ≤ 2, Y = y] = E[Var[X|T ≤ 2, Y = y, T ]|T ≤ 2, Y = y] +
+Var[E[X|T ≤ 2, Y = y, T ]|T ≤ 2, Y = y]
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