Name:
SID:
UID:

Problem 1 Points of 25
Problem 2 Points of 25
Problem 3 Points of 25
Problem 4 Points of 25
Score \%

- Closed book, closed notes
- One pocket calculator permitted (no PDAs, laptops, cell phones, or other electronic devices)
- Show derivations to get partial credit in case of numerical errors
- Cross out incorrect attempts (no partial credit for ambiguous derivations)
- Write results into boxes
- Take off hats or caps and leave backpacks and electronic devices in isle

Password: \square Submit Reload

1. Capacitor C_{1} in the circuit below is discharged at $t=0$. Use $V_{1}=\mathrm{V}, R_{1}=\mathrm{k} \Omega$ and $C_{1}=\mathrm{nF}$. Calculate
a) the energy stored on the capacitor at time $t=0$.

b) the energy stored on the capacitor at time $t \rightarrow \infty$.

c) the total energy delivered by the source V_{1} for $t=0 \ldots \infty$.

2. In the circuit below, all switches are initially open and the capacitors discharged. At time $t=0$, switches S_{1} and S_{2} are closed. At time $t_{1}>0 S_{1}$ and S_{2} are opened and switch S_{3} is closed. Use $V_{1}=\mathrm{V}, V_{2}=\mathrm{V}, \mathrm{C}_{1}=\mathrm{pF}$, $C_{2}=\mathrm{pF}$ and $C_{3}=\mathrm{pF}$ and assume that all capacitors are discharged before closing switches S_{1} and S_{2}. Calculate
a) The total charge delivered by the sources to C_{1}, C_{2}, and C_{3} at $t=0$.

b) The voltage $v_{c 1}$ for $t>t_{1}$.

3. The circuit below is a partial implementation of a logic gate that computes the output Y from inputs A, B, and C.
a) (15 points) Add transistors as needed to complete the implementation such that for all binary input combination the output is either connected to $V_{d d}$ or ground but not both.
b) (10 points) Fill out the truth table of the logic gate for all possible inputs.

A	B	C	Y
0	0	0	
0	0	1	

4. In the circuit below switch S_{1} is open for $t<0$ and the current through $L_{1}=\mathrm{mH}$ is zero. At time $t=0$ the switch closes, and reopens at time $t=T_{1}$. Calculate T_{1} such that the voltage across $R_{1}=\Omega$ just after the switch reopens is $v_{R}\left(t=T_{1}\right)=\quad \mathrm{V}$. Use $V_{1}=\mathrm{V}$. $T_{1}=\square{ }_{5}^{25 \mathrm{pls}}$

