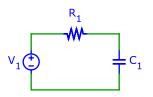
Name:	
SID:	
UID:	

Problem 1	Points of 25
Problem 2	Points of 25
Problem 3	Points of 25
Problem 4	Points of 25

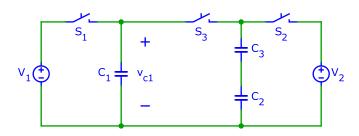
- Score _____%
- Closed book, closed notes
- One pocket calculator permitted (no PDAs, laptops, cell phones, or other electronic devices)
- Show derivations to get partial credit in case of numerical errors
- Cross out incorrect attempts (no partial credit for ambiguous derivations)
- Write results into boxes
- Take off hats or caps and leave backpacks and electronic devices in isle

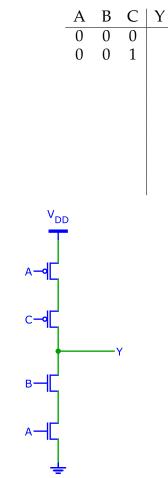

Password:

1. Capacitor C_1 in the circuit below is discharged at t = 0. Use $V_1 = -V$, $R_1 = -k\Omega$ and $C_1 = -nF$. Calculate a) the energy stored on the capacitor at time t = 0.

b) the energy stored on the capacitor at time $t \to \infty$.

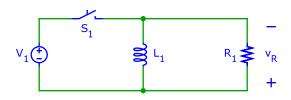
c) the total energy delivered by the source V_1 for $t = 0 \dots \infty$.




- 2. In the circuit below, all switches are initially open and the capacitors discharged. At time t = 0, switches S_1 and S_2 are closed. At time $t_1 > 0$ S_1 and S_2 are opened and switch S_3 is closed. Use $V_1 = V$, $V_2 = V$, $C_1 = pF$, $C_2 = pF$ and $C_3 = pF$ and assume that all capacitors are discharged before closing switches S_1 and S_2 . Calculate
 - a) The total charge delivered by the sources to C_1 , C_2 , and C_3 at t = 0.

10 pts. 3

b) The voltage v_{c1} for $t > t_1$.



- 3. The circuit below is a partial implementation of a logic gate that computes the output *Y* from inputs *A*, *B*, and *C*.
 - a) (15 points) Add transistors as needed to complete the implementation such that for all binary input combination the output is either connected to V_{dd} or ground but not both.
 - b) (10 points) Fill out the truth table of the logic gate for all possible inputs.

4. In the circuit below switch S_1 is open for t < 0 and the current through $L_1 = m$ is zero. At time t = 0 the switch closes, and reopens at time $t = T_1$. Calculate T_1 such that the voltage across $R_1 = \Omega$ just after the switch reopens is $v_R(t = T_1) = V$. Use $V_1 = V$. 25 pts. 5

$$T_1 =$$

