Name:

SID:
UID:

Problem 1
Points of 25
Problem 2 Points of 25
Problem 3 Points of 25
Problem 4 Points of 25
Score \%

- Closed book, closed notes
- One pocket calculator permitted (no PDAs, laptops, cell phones, or other electronic devices)
- Show derivations to get partial credit in case of numerical errors
- Cross out incorrect attempts (no partial credit for ambiguous derivations)
- Write results into boxes
- Take off hats or caps and leave backpacks and electronic devices in isle

Password: \square Submit Reload

1. In the circuit below i_{D} and R_{D} model a photodiode in a fiberoptic receiver. Find R_{1} and $v_{o s}$ such that

$$
\begin{equation*}
v_{o}=R_{x} i_{D}+v_{b} \tag{1}
\end{equation*}
$$

Parameter: $R_{D}=\mathrm{k} \Omega, R_{x}=\mathrm{k} \Omega, v_{b}=\mathrm{mV}$.

2. Find the value of I_{1} and R_{4} such that the power dissipated in R_{2} is $P_{R_{2}}=\mathrm{mW}$ and $v_{5}=\mathrm{V}$. Parameter: $I_{2}=\mathrm{mA}, V_{1}=\mathrm{V}, R_{1}=\mathrm{k} \Omega, R_{2}=\mathrm{k} \Omega, R_{3}=\mathrm{k} \Omega, R_{5}=\mathrm{k} \Omega$.

3. Find component values such that all three circuits shown behave identically.

Parameter: $I_{1}=\mathrm{mA}, V_{1}=\mathrm{V}, R_{1}=\mathrm{k} \Omega$ and $R_{2}=\mathrm{k} \Omega$.

(a)

(b)

(c)
4. Precision opamps come particularly close to the specifications of "ideal" amplifiers, but usually cannot drive low resistance loads R_{L}. In the circuit below, the "precision opamp" sets v_{0}, while the "power opamp" delivers the load current i_{L}. Determine R_{1} such that $i_{o}=0$. Hint: this condition is met when $i_{L}+i_{x}=0$.
Parameter: $R_{2}=\mathrm{k} \Omega, R_{L}=\Omega, R_{x}=\Omega$.

$$
R_{1}=\square_{8}^{25 \text { pts. }}
$$

