EECS 40, Fall 2006
 Prof. Chang-Hasnain Midterm \#1

September 27, 2006
Total Time Allotted: 50 minutes
Total Points: 100

1. This is a closed book exam. However, you are allowed to bring one page (8.5" x 11 "), single-sided notes
2. No electronic devices, i.e. calculators, cell phones, computers, etc.
3. SHOW all the steps on the exam. Answers without steps will be given only a small percentage of credits. Partial credits will be given if you have proper steps but no final answers.
4. Draw BOXES around your final answers.
5. Remember to put down units. Points will be taken off for answers without units.

Last (Family) Name: \qquad

First Name: \qquad

Student ID: \qquad Discussion Session: \qquad

Signature: \qquad

Score:	
Problem 1 (50 pts)	
Problem 2 (50 pts):	
Total	

1. (50 pts) Equivalent circuit.

(a) (5 pts) What is the current i_{1} through the 5 Ohm resistor?
$i_{1}=5 A$
(b) (5 pts) Use KVL, write down the equation for V_{x} in terms of V_{1} and/or V_{2}
$V_{x}=V_{1}-2$
(c) (5 pts) Use KCL, write down the equation for V_{1} and solve for V_{1}
$-5+\frac{V_{1}}{2}+3 \cdot V_{x}+\frac{V_{x}}{2}=0$
$-10+V_{1}+6 \cdot V_{x}+V_{x}=0$
$-10+V_{1}+7 \cdot V_{x}=0$
$-10+V_{1}+7 \cdot\left(V_{1}-2\right)=0$
$-24+8 \cdot V_{1}=0$
$V_{1}=3 \mathrm{~V}$
(d) (5 pts) Use KCL, write down the equation for V_{2} and solve for V_{2}
$-5+\frac{V_{2}-V_{1}}{5}=0$
$-25+V_{2}-V_{1}=0$
$V_{2}=25+V_{1}$
$V_{2}=28 \mathrm{~V}$
(e) (5 pts) Solve for $\mathrm{V}_{\text {out }}$ (this is simply the Thevenin Voltage)

$$
\begin{aligned}
& V_{\text {out }}=V_{1} \\
& V_{\text {out }}=V_{1}=3 \mathrm{~V}
\end{aligned}
$$

(f) Now we short the two end terminals.

(5 pts) What is V_{x} ?
$V_{x}=V_{1}-2$
$V_{1}=0$
$V_{x}=0-2$
$V_{x}=-2 V$
(g) (5 pts) What is V_{1} ?
$V_{1}=0$

UC BERKELEY
(h) (5 pts) What is I_{sc} ?
$-5+3 \cdot V_{x}+I_{s c}+\frac{V_{x}}{2}=0$
$-5+3 \cdot(-2)+I_{s c}+\frac{-2}{2}=0$
$I_{s c}=12 A$
(i) (5 pts) what is the Thevenin Resistance?
$R=\frac{V_{o c}}{I_{s c}}$
$R=\frac{3 V}{12 A}=\frac{1}{4} \Omega$
(j) (5 pts) Draw the Thevenin Equivalent Circuit.

2. For $\mathrm{t}<0$, the switch was open and $\mathrm{V}_{\text {out }}=0$. At $\mathrm{t}=0 \mathrm{~s}, \mathrm{~S} 1$ closes. NOTE: $\mu=10^{-6} ; \mathrm{k}=10^{3}$; $e^{-1}=0.37 ; e^{-2}=0.14$ Remember to put down units.

(a) (12 pts) Construct the differential equation of $\mathrm{V}_{\text {out }}$ in terms of all the given quantities. Hint:you may solve this use Mesh or Nodal analysis, or, even simpler, Thevnin equivalent circuit. Write all your steps.

Thevenin Equivalence:
Rewrite the 10V source and R1 into a Nodal Equivalent Circuit:
10 V source becomes 1 A source
R1 is now in parallel with the 1A source.
Combine R1 and R3 together to create a 5k ohm resister.
Rewrite the 1A source and 5 k ohm resister into Thevenin Equivalent Circuit.
1 A source becomes 5 V source
5 k ohm resister is in series with the 5 V source.
Combine R1||R3 with R2 to yield 20k ohm resister.
We now have a 5 V source in series with a 20k ohm resister in series with a 1 uF capacitor. Using the predetermined equations, we can fill in the variables and obtain the equation show below.

Nodal Analysis:

$$
\begin{aligned}
& \frac{V_{2}-V_{\text {in }}}{10 k}+\frac{V_{2}}{10 k}+\frac{V_{2}-V_{\text {out }}}{15 k}=0 \\
& \frac{V_{\text {out }}-V_{2}}{15 k}+C \frac{d V_{\text {out }}}{d t}=0
\end{aligned}
$$

multiply both sides by 30 k

$$
\begin{aligned}
& 3 V_{2}-3 V_{\text {in }}+3 V_{2}+2 V_{2}-2 V_{\text {out }}=0 \\
& 8 V_{2}-3 V_{\text {in }}-2 V_{\text {out }}=0 \\
& V_{2}=\frac{3 V_{\text {in }}+2 V_{\text {out }}}{8} \\
& \frac{V_{\text {out }}}{15 k}-\frac{1}{15 k}\left(\frac{3}{8} V_{\text {in }}+\frac{1}{4} V_{\text {out }}\right)+C \frac{d V_{\text {out }}}{d t}=0 \\
& V_{\text {out }}-\frac{3}{8} V_{\text {in }}-\frac{1}{4} V_{\text {out }}+15 k \cdot C \frac{d V_{\text {out }}}{d t}=0
\end{aligned}
$$

UC BERKELEY

$$
\begin{aligned}
& \frac{3}{4} V_{\text {out }}+15 \mathrm{k} \cdot C \frac{d V_{\text {out }}}{d t}=\frac{3}{8} V_{\text {in }} \\
& V_{\text {out }}+20 \mathrm{k} \cdot \mathrm{C} \frac{d V_{\text {out }}}{d t}=\frac{1}{2} V_{\text {in }} \\
& V_{\text {out }}+15 \mathrm{k} \cdot 1 u F \frac{d V_{\text {out }}}{d t}=5 \\
& V_{\text {out }}+20 \mathrm{~ms} \frac{d V_{\text {out }}}{d t}=5 \mathrm{~V}
\end{aligned}
$$

(b) (5 pts) Write a closed-form expression for $\mathrm{V}_{\text {out }}(\mathrm{t})$ for $\mathrm{t}>0$

Vout $=5\left(1-e^{-t / 20 m s}\right)$
(c) (8 pts) Plot $\mathrm{V}_{\text {out }}$ as a function of time $\mathrm{t}=0$ to $\mathrm{t}=100 \mathrm{~ms}$. Label the y -axis and all key points: starting value, 1 time constant value, value at infinity.

(Note at 20 ms , Vout $=3.15$ using the above approximation for e^{-1})
(Note at infinity, Vout should approach 5V)
(d) (5 pts) As t approaches infinity, what value will i_{3} approach?

Because at infinity, the capacitor becomes an open,
$I=\frac{V}{R}=\frac{10}{R 1+R 2}=\frac{10}{20 k}=\frac{1}{2} m A$
(e) (5 pts) Now, suppose someone disturbed the circuit and S1 is re-opened at 40 ms again! Construct the new differential equation.

If switch $S 1$ is open, R1 becomes irrelevant because it is connected to an open circuit.
Therefore we combine R2 and R3 to yield a 25k ohm resister.
Again we have a predetermined form and therefore the equation is
$V_{\text {out }}+R C \frac{d V_{\text {out }}}{d t}=0$
$V_{\text {out }}+25 k \cdot 1 u F \frac{d V_{\text {out }}}{d t}=0$
$V_{\text {out }}+25 m s \frac{d V_{\text {out }}}{d t}=0$
(f) (6 pts) What is the new time constant? What is the new expression for $V_{\text {out }}(t)$ for $t>40 \mathrm{~ms}$.
$\tau=R C=25 \mathrm{~ms}$

Vout $=K e^{-t / 25 m s}$
$\operatorname{Vout}(t=40 \mathrm{~ms})=5\left(1-e^{-40 \mathrm{~ms} / 20 \mathrm{~ms}}\right)=K e^{-0 / 25 m s}=4.3$
$K=4.3$
Vout $=4.3 \mathrm{Ke}^{-t / 25 \mathrm{~ms}}$
with a 40 ms timeshift
Vout $=4.3 e^{-(t-40 \mathrm{~ms}) / 25 m s}$
(g) (5 pts) Plot the new $\mathrm{V}_{\text {out }}$ from $\mathrm{t}=0 \mathrm{~ms}$ to 100 ms to include the re-opening of the switch at 40 ms. Label the y-axis and all key points: starting value, value at switching point, 1 time constant values, value at infinity.

(Note that at 20 ms , Vout $=3.15 \mathrm{~V}$, using approximation)
(Note that at 40 ms , Vout $=4.3 \mathrm{~V}$, using approximation)
(Note that at 65 ms , Vout $=1.591 \mathrm{~V}$, using approximation)
(Note that at infinity, Vout approaches 0V)
(h) (5 pts) In this case, as t approaches infinity, what value will i_{3} approach?
$I_{3}=0 \mathrm{~A}$

