University of California, Berkeley

Department of Mechanical Engineering

ME 104 Spring Semester 2024: Midterm Exam 1 (6 March 2024)

Choosing cylindrical coordinates in an inertial frame of reference, we may write the position vector \mathbf{r} of a particle A of mass m as

$$
\mathbf{r}=\chi(A, t)=R \mathbf{e}_{R}+z \mathbf{k}
$$

where

$$
\mathbf{e}_{R}=\cos \theta \mathbf{i}+\sin \theta \mathbf{j}, \quad \mathbf{e}_{\theta}=-\sin \theta \mathbf{i}+\cos \theta \mathbf{j} .
$$

Suppose that A moves along a path \mathcal{C} whose curvature κ is everywhere positive. Let s be the arclength of \mathcal{C}. The unit tangent vector \mathbf{e}_{t} and the principal unit normal vector \mathbf{e}_{n} are defined by

$$
\boldsymbol{e}_{t}=\frac{d \boldsymbol{r}}{d s}, \quad \mathbf{e}_{n}=\frac{1}{\kappa} \frac{d \mathbf{e}_{t}}{d s},
$$

and the unit binormal vector is

$$
\mathbf{e}_{b}=\mathbf{e}_{t} \times \mathbf{e}_{n}
$$

Problem 1 (15 points)

(a) Calculate the time derivatives $\dot{\mathbf{e}}_{R}$ and $\dot{\mathbf{e}}_{\theta}$ and obtain the expression for the velocity vector of A in the cylindrical coordinate system.
(b) Hence, deduce that the acceleration of A is given by

$$
\boldsymbol{a}=\left(\ddot{R}-R \dot{\theta}^{2}\right) \boldsymbol{e}_{R}+(R \ddot{\theta}+2 \dot{R} \dot{\theta}) \boldsymbol{e}_{\theta}+\ddot{z} \boldsymbol{k} .
$$

(c) Also, show that the acceleration of A is expressed on the Frenet-Serret basis by

$$
\mathbf{a}=\ddot{s} \mathbf{e}_{t}+\kappa \dot{s}^{2} \mathbf{e}_{n} .
$$

(d) Deduce that

$$
\mathbf{v} \times \mathbf{a}=\kappa \dot{s}^{3} \boldsymbol{e}_{b} .
$$

Problem 2 (35 points)

Consider a rigid tube $M L$ that is attached to rigid horizontal bars $K L$ and $N M$ which are driven about the vertical z-axis by a motor at K (see Fig. 1). Suppose that a slider of mass $m \mathrm{~kg}$ is connected to the tube at L by a linear massless spring of stiffness $k \mathrm{~N} / \mathrm{m}$. The uncompressed length of the spring is

$$
l_{0}=h+\delta \mathrm{m}
$$

Neglect friction.

(a) Suppose that for $t \leq 0$ the slider is in equilibrium at $z=0$ and $\theta=0$. Draw the freebody diagram of the equilibrated slider and calculate the static compression δ.
(b) For $t \geq 0$, let θ be prescribed in radians for some interval of time by

$$
\theta=2 t^{2}
$$

Write the expressions for the velocity and acceleration vectors of the slider in cylindrical coordinates.
(c) For a general position \boldsymbol{r} of the slider at $t \geq 0$, when the length of the spring is

$$
l(t)=z+h
$$

determine the force exerted on the slider by the spring.
(d) Draw the free-body diagram of the slider in motion. Label the forces in vector form.
(e) Apply Euler's first law as a vector equation.
(f) Solve for the radial and transverse components of force as functions of time.
(g) Show that the $z(t)$ satisfies the differential equation for simple harmonic motions.
(h) If $\dot{z}(0)=c>0 \mathrm{~m} / \mathrm{s}$, calculate the unit tangent vector \boldsymbol{e}_{t} at time $t=0$.
(i) Evaluate \ddot{z} at time $t=0$.
(j) Calculate the curvature and the unit binormal vector \boldsymbol{e}_{b} at time $t=0$.
(k) Find the principal unit normal vector \boldsymbol{e}_{n} at time $t=0$.

Fig. 1

