Physics 7B, Fall 2022

Final Exam - Prof. R. Birgeneau

Dec. 12, 2022 / 11:30am-2:30pm

Name:

Instructions:

- Write your answer to each question in the designated box provided. Otherwise, you will not be given credits for your answer.
- You can use the back page of the paper for your solution but make sure that only your final answer to each question is within the box.
- Write legibly and only use variables given in the problem. The graders will be strict in distinguishing upper- and lower-case letters so make sure to use what is specified in the problem.
- If asked for a numerical answer, always round up your answer to 2 decimal places. If your answer is an integral value, no need to add two decimal places anymore.
- You can use any equations without the need to prove them unless stated explicitly in the problem.
- Write your SID \# in all pages of the exam paper for us to easily find your paper if ever it gets detached from the rest of your paper.
- You may use constants in your answer such as k for $\frac{1}{4 \pi \epsilon_{0}}, \mu_{0}, \epsilon_{0}, e$ for the magnitude of the charge of electron/proton, R for gas constant, g, etc.
- If not stated, you can assume that the units of the given variables are in SI unit system.

SID \#: \qquad

Problem 1: [10 points]

Part 1:
Suppose n moles of an ideal gas of volume V_{1} at T_{1} are allowed to expand isothermally to V_{2}.
(a) [2 points] Determine the work done by the gas, W.

(b) [1 point $]$ What is the heat added to the gas, Q ?
$Q=$
(c) $[1$ point $]$ What is the change in internal energy of the gas, ΔU ?
\square

Part 2:
In an engine, an almost ideal gas is compressed adiabatically to half its volume. In doing so, W work is done on the gas. The gas is not necessarily monoatomic. If initially, the gas has a temperature of T_{1} and a volume V_{1}.
(a) [2 points] How much heat flows into or out of the gas?
(b) [1 point] What is the change in internal energy of the gas?

(c) [3 points] What is the final temperature of the gas? Does it rise or fall?

Problem 2: [15 points]

A nonconducting sphere of radius a is uniformly charged with volume charge density ρ_{E}. It is surrounded by a concentric metal (conducting) spherical shell of inner radius b and outer radius c, which carries a net charge of +Q . Using Gauss's Law, determine the resulting enclosed charge and electric field in four different regions:
(a) [4 points] $0<r<a$

$Q_{\text {encl }}=$
$E(r)=$
(b) [4 points] $a<r<b$

(c) [3 points] $b<r<c$
$Q_{\text {encl }}=$
$E(r)=$

SID \#:
(d) $[4$ points $] r>c$
$Q_{e n c l}=$

$E(r)=$
\qquad

Problem \# 3: [10 points]

Using the figure below, find the following:

(a) [2 points] Using Kirchhoff's Loop Rule, derive an equation in terms of I_{1}, I_{2} and I_{3} from the upper loop. Combine similar terms in your equation.

(b) [2 points] Repeat part (a) but this time using the lower loop.
\qquad
$I_{1}+$
(c) [2 points] Using Kirchhoff's Junction Rule, derive an equation for node a.

$$
\ldots \quad I_{1}+\ldots \quad I_{2}+\ldots \quad I_{3}=
$$

(d) [2 points] What is the terminal voltage of the 45 V battery?

(e) [2 points] What is the potential difference between points a and d ?

Problem \# 4: [10 points]

A doubly charged helium atom whose mass is M is initially at rest. It is accelerated by a voltage of X volts which causes it to move. Upon reaching its maximum speed, it enters a region of uniform magnetic field of magnitude B which is perpendicular to the direction of the Helium atom motion.
(a) [4 points] What is the speed, v, of the helium atom as it enters the region of the magnetic field?

$v=$ \square
(b) [3 points] What is the radius of curvature, R, of the motion of the helium atom? You may leave your answer in terms of the speed v (solved in part a).
\qquad
(c) [3 points] What is the period of revolution, T, of the Helium atom? You may leave your answer in terms of R (solved in part b).
\square

Problem \# 5: [20 points]

Part 1:

A rectangular loop of wire is placed next to a straight wire as shown in the figure below. There is a current of I Amperes in both wires, as shown in the figure.

(a) [2 points] Determine the magnetic field (in Tesla) at the location of segment AB , both magnitude and direction.
$B_{A B}=\square$, direction $=\square$
(b) [2 points] Determine the magnetic field at the location of segment CD, both magnitude and direction.

(c) [4 points] What is the net force (magnitude and direction) acting on the loop?
$F=\square$, direction $=\square$

Part 2:

A long horizontal wire carries a current of I_{1} Amperes. A second wire, made of d diameter copper wire and parallel to the first, is kept in suspension magnetically a distance of x below. Consider the effect of gravity in this problem and assume that the density of copper wire is ρ_{c}.

(a) [2 point] What must be the direction of force on the lower wire due to I_{1} for it to be kept in suspension?
\square
(b) [2 point] What should be the direction of the current in the lower wire to create such a force due to the upper wire?
\square
(c) [4 points] Calculate the magnitude of the force per unit length to keep the lower wire suspended as stated in the problem.

(d) [4 points] Calculate the magnitude of current in the lower wire.

Problem \# 6: [20 points]

Part 1:
The area of an elastic circular loop decreases at a constant rate of $\frac{d A}{d t}=P$. The loop is in a uniform magnetic field, B, that is perpendicular to the plane of the loop. At $t=0$, the loop has an area of A_{0}.

(a) [3 points] Determine the induced emf at $t=0$.
\square
(b) [2 points] Determine the induced emf at $t=T$.

Suppose the radius of the elastic loop increases at a constant rate $\frac{d r}{d t}=S$ instead.
(c) [3 points] Determine the induced emf at $t=0$.

(d) [4 points] Determine the induced emf at $t=T$.
\qquad

Part 2:

The rod moves to the right with a speed of v and has a resistance r. The rail separation is ℓ. The magnetic field is B, and the resistance of the U - shaped conductor is R at a given instant.

(a) $[3$ points $]$ Calculate the induced emf.
\square
(b) [2 points] Calculate the current in the U-shaped conductor.
$I=$
(c) [3 points] What is the required external force to keep the rod's velocity constant at that instant?

Problem \# 7: [15 points]

Part 1:

An air-filled cylindrical inductor has N_{1} turns, and it is d_{1} in diameter and l_{1} long.
(a) [2 points] What is its inductance?
(b) [2 points] How many turns would you need to generate the inductance if the core were filled with iron of magnetic permeability μ ?

Part 2:

Given the circuit diagram below. Solve for I_{3} in all the following cases.

(a) [2 points] The moment the switch is closed:

(b) [5 points] The switch has been closed for a very long time:

(c) [2 points] Just after the switched is open:
(d) [2 points] The switched is open for a very long time:

SID \#:

SID \#:

SID \#:

