EECS 126: Probability and Random Processes

Solutions to Problem Set 10 (mid-term 2)

Note: Please send your score to cchang@eecs.berkeley.edu

Problem 1

a) False.

A counterexample: let X and B be independent random variables, $X \sim N(0,1), B$ is a Bernoulli random variable where $P(B=-1)=P(B=1)=0.5$. Let $Y=B X$, obviously X and Y are not independent, $X \sim N(0,1)$ and $E(X Y)=E\left(X^{2} B\right)=E\left(X^{2}\right) E(B)=0$.
b) False.

Proof by contradiction: suppose there exists a function g, s.t. $Y=g(X)$ is uniformly distributed in $[0,1]$. Then let $a=g(1)$,

$$
\operatorname{Pr}(Y=a)=\operatorname{Pr}(g(X)=a)=\operatorname{Pr}(g(X)=g(1)) \geq \operatorname{Pr}(X=1)>0
$$

It's impossible because Y is a uniform random variable.
c) True.
proof:
The MMSE estimation of X is $\hat{X}=E(X \mid Y)$, so

$$
\begin{aligned}
& E(\tilde{X})=E(X-\hat{X})=E(X)-E(\hat{X})=E(X)-E(E(X \mid Y))=E(X)-E(X)=0 \\
& \operatorname{Cov}(\tilde{X}, Y)=E(\tilde{X} Y)-E(\tilde{X}) E(Y) \\
& =E(\tilde{X} Y) \\
& =E((X-E(X \mid Y)) Y) \\
& =E(X Y)-E(Y E(X \mid Y)) \\
& =E(X Y)-E(E(X Y \mid Y)) \\
& =E(X Y)-E(X Y) \\
& =0
\end{aligned}
$$

Problem 2

a) We will show that $X_{i} \sim N(0,1)$ using proof by induction. proof : $X_{0} \sim N(0,1)$, suppose $X_{k} \sim N(0,1)$. Then X_{k} and N_{k+1} have the same pdf

$$
f_{X_{k}}(x)=f_{N_{k+1}}(x)=\frac{1}{\sqrt{2 \pi}} e^{-\frac{x^{2}}{2}}
$$

Then $\forall x \in \mathcal{R}$

$$
\begin{align*}
f_{X_{k+1}}(x) & =f_{X_{k}}(x) P\left(B_{k+1}=0\right)+f_{N_{k+1}}(x) P\left(B_{k+1}=1\right) \\
& =p \frac{1}{\sqrt{2 \pi}} e^{-\frac{x^{2}}{2}}+(1-p) \frac{1}{\sqrt{2 \pi}} e^{-\frac{x^{2}}{2}} \\
& =\frac{1}{\sqrt{2 \pi}} e^{-\frac{x^{2}}{2}} \tag{1}
\end{align*}
$$

We just proved by induction that $X_{i} \sim N(0,1)$.
b) No.

Proof by contradiction, assume that X, Y are jointly continuous. Then $\exists \operatorname{pdf} f_{X_{1} X_{2}}\left(x_{1}, x_{2}\right)$, s.t. for every subset D of the two dimensional-plane:

$$
P\left(\left(X_{1}, X_{2}\right) \in D\right)=\iint_{\left(x_{1}, x_{2}\right) \in D} f_{X_{1} X_{2}}\left(x_{1}, x_{2}\right) d x_{1} d x_{2}
$$

Let $D=\left\{\left(x_{1}, x_{2}\right) \in \mathcal{R}^{2}: x_{1}=x_{2}\right\}$, then $P\left(\left(X_{1}, X_{2}\right) \in D\right)=P\left(X_{1}=X_{2}\right)=0.5$
But if D is a set of area zero in \mathcal{R}^{2}, thus $\iint_{\left(x_{1}, x_{2}\right) \in D} f_{X_{1} X_{2}}\left(x_{1}, x_{2}\right) d x_{1} d x_{2}=0$. Now we have a contradiction. Thus the origin assumption that X, Y are jointly continuous is false.
c) From part a), we know that $E\left(X_{i}\right)=0$.

$$
\begin{aligned}
\operatorname{Cov}\left(X_{1}, X_{2}\right) & =E\left(X_{1} X_{2}\right)-E\left(X_{1}\right) E\left(X_{2}\right) \\
& =E\left(E\left(X_{1} X_{2} \mid B_{2}\right)\right) \\
& =E\left(X_{1} X_{2} \mid B_{2}=0\right) P\left(B_{2}=0\right)+E\left(X_{1} X_{2} \mid B_{2}=1\right) P\left(B_{2}=1\right) \\
& =E\left(X_{1}^{2}\right)(1-p)+E\left(X_{1} N_{2}\right) p \\
& =(1-p)
\end{aligned}
$$

d) If $B_{i+1}=B_{i+2}=\ldots=B_{j}=0$, then $X_{j}=X_{i}, E\left(X_{i} X_{j}\right)=1$.

Otherwise $\exists l, \quad i+1 \leq l \leq j: B_{l}=0$, let $k, \quad i+1 \leq k \leq j$ be the maximum index, s.t. $B_{k}=1$, then $X_{j}=N_{k}$ and N_{k} and X_{i} are independent, $E\left(X_{i} X_{j}\right)=0$. So:

$$
\begin{aligned}
\operatorname{Cov}\left(X_{i}, X_{j}\right)= & E\left(X_{i} X_{j}\right)-E\left(X_{i}\right) E\left(X_{j}\right) \\
= & E\left(E\left(X_{i} X_{j} \mid B_{i+1}, B_{i+2}, \ldots, B_{j}\right)\right) \\
= & E\left(X_{i} X_{j} \mid B_{i+1}=B_{i+2}=\ldots=B_{j}=0\right) P\left(B_{i+1}=B_{i+2}=\ldots=B_{j}=0\right) \\
& +E\left(X_{i} X_{j} \mid \exists l, \quad i+1 \leq l \leq j: B_{l}=0\right) \operatorname{Pr}\left(\exists l, \quad i+1 \leq l \leq j: B_{l}=0\right) \\
= & E\left(X_{i}^{2}\right)(1-p)^{j-i}+0 \\
= & (1-p)^{j-i}
\end{aligned}
$$

Problem 3

a) Condition on $X=x, Y$ is uniformly distributed in $\left[x^{2}, x^{2}+1\right]$. Thus the conditional expectation of Y given $X=x$ is $x^{2}+0.5$. So the MMSE estimator is $\hat{X}=E(Y \mid X)=X^{2}+0.5$
b) Some of the statistics of X and Y are $E(X)=0$,

$$
\begin{gathered}
E\left(X^{2}\right)=\int_{-0.5}^{0.5} x^{2} d x=\frac{1}{12} \\
E(Y)=E(E(Y \mid X))=E\left(X^{2}+0.5\right)=\frac{7}{12} \\
E\left(Y^{2}\right)=E\left(E\left(Y^{2} \mid X\right)\right)=\int_{-0.5}^{0.5} \int_{x^{2}}^{x^{2}+1} y^{2} d y d x=\frac{7}{12}
\end{gathered}
$$

The LLSE estimator is $\hat{Y}=a X+b$. Then

$$
\begin{equation*}
E\left((Y-\hat{Y})^{2}\right)=E\left((Y-a X-b)^{2}\right)=E\left(Y^{2}\right)+a^{2} E\left(X^{2}\right) \tag{2}
\end{equation*}
$$

c) The MMSE estimator $\hat{Y}=X^{2}+0.5$ has a quadratic form. So the best quadratic estimator (in mean square sense) is just the MMSE estimator $X^{2}+0.5$
d) X, Y are jointly Gaussian, so the MMSE estimator for Y given X is $a X+b$, thus the best quadratic estimator (in mean square sense) is just the MMSE estimator $a X+b$, so $a_{3}=0$.

