Do your calculations on the sheets and put a box around your answer where this makes sense.
Print your name and your TA’s name and section time here:

<table>
<thead>
<tr>
<th>Last Name</th>
<th>First</th>
<th>TA’s name</th>
<th>Section time</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Prob #</th>
<th>Max</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>100</td>
<td></td>
</tr>
</tbody>
</table>
Useful tips

FT pairs

<table>
<thead>
<tr>
<th>Signal $t \rightarrow x(t)$</th>
<th>$\omega \rightarrow X(\omega)$</th>
<th>$f \rightarrow X(f)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$X(t)$</td>
<td>$2\pi x(-\omega)$</td>
<td>$x(-f)$</td>
</tr>
<tr>
<td>$x(t) \equiv 1$</td>
<td>$X(\omega) = 2\pi \delta(\omega)$</td>
<td>$X(f) = \delta(f)$</td>
</tr>
<tr>
<td>$x(t) = \delta(t)$</td>
<td>$X(\omega) \equiv 1$</td>
<td>$X(f) \equiv 1$</td>
</tr>
<tr>
<td>$x(t) = \text{sgn}(t)$</td>
<td>$X(\omega) = \frac{2 \delta}{j\omega}$</td>
<td>$X(f) = \frac{1}{j\pi f}$</td>
</tr>
<tr>
<td>$x(t) = u(t)$</td>
<td>$X(\omega) = \frac{1}{j\omega} + \pi \delta(\omega)$</td>
<td>$X(f) = \frac{1}{j2\pi f} + \frac{1}{2} \delta(f)$</td>
</tr>
<tr>
<td>$x(t) = \frac{1}{\pi t}$</td>
<td>$X(\omega) = -j \text{sgn}(\omega)$</td>
<td>$X(f) = -j \text{sgn}(f)$</td>
</tr>
<tr>
<td>$x(t) = \Pi(t) = 1$, $</td>
<td>t</td>
<td>\leq 1/2$, 0 else</td>
</tr>
<tr>
<td>$X_n \sum e^{jn\omega_0 t}$</td>
<td>$\sum X_n \delta(f - n f_0)$</td>
<td>$2\pi \sum \delta(\omega - n \omega_0)$</td>
</tr>
<tr>
<td>$\dot{x}(t)$</td>
<td>$-j \text{sgn}(f) X(f)$</td>
<td>$-j \text{sgn}(\omega) X(\omega)$</td>
</tr>
</tbody>
</table>

FT properties

$x(at)$	$\frac{1}{	a	} X\left(\frac{\omega}{a}\right)$	$\frac{1}{	a	} X\left(\frac{\omega}{a}\right)$
$x \ast y$	$X(f) Y(f)$	$X(\omega) Y(\omega)$				
$x(t) y(t)$	$(X \ast Y)(f)$	$\frac{1}{2\pi} (X \ast Y)(\omega)$				
$X(t)$	$x(-f)$	$2\pi x(-\omega)$				
$e^{2\pi f_0 t} x(t)$	$X(f - f_0)$	$X(\omega - \omega_0)$				
$\dot{x}(t)$	$(j 2\pi f) X(f)$	$(j \omega) X(\omega)$				
$\int_{-\infty}^{t} x(s) ds$	$\frac{1}{j2\pi f} + \frac{1}{2} X(0) \delta(f)$	$\frac{1}{j\omega} X(\omega) + \pi X(0) \delta(\omega)$				

Parseval’s theorem.

$$\int_{-\infty}^{\infty} |x(t)|^2 dt = \int_{-\infty}^{\infty} |X(f)|^2 df = \frac{1}{2\pi} \int_{-\infty}^{\infty} |X(\omega)|^2 d\omega$$

Trig identities

\[
\begin{align*}
\sin(x \pm y) &= \sin x \cos y \pm \cos x \sin y \\
\cos(x \pm y) &= \cos x \cos y \mp \sin x \sin y \\
\sin x \sin y &= \frac{1}{2} [\cos(x - y) - \cos(x + y)] \\
\cos x \cos y &= \frac{1}{2} [\cos(x - y) + \cos(x + y)] \\
\sin x \cos y &= \frac{1}{2} [\sin(x - y) + \sin(x + y)]
\end{align*}
\]
1. **15 points** Find the FT of \(x \), and sketch the real and imaginary parts of \(X(\omega) \), where

\[
\forall t, \quad x(t) = \Pi(t) \ast \Pi(t) * \sum_{-\infty}^{\infty} \delta(t - 8n).
\]

Here \(\Pi(t) = 1 \) for \(|t| \leq 1/2 \) and 0, else. In your sketch carefully mark the relevant frequencies and magnitudes.

Answer

From Table above the FT of

\[
\Pi \leftrightarrow X_1: \omega \mapsto \frac{\sin(\omega/2)}{\omega/2}.
\]

From the Table above,

\[
t \mapsto \sum_{-\infty}^{\infty} \delta(t - 8n) \leftrightarrow X_2: \omega \mapsto \frac{2\pi}{8} \sum_{k=-\infty}^{\infty} \delta(\omega - \frac{2\pi k}{8}).
\]

By the convolution property,

\[
x \leftrightarrow X(\omega) = [X_1(\omega)]^2 X_2(\omega)
\]

\[
= \left[\frac{\sin(\omega/2)}{\omega/2} \right]^2 \frac{2\pi}{8} \sum_{k=-\infty}^{\infty} \delta(\omega - \frac{2\pi k}{8})
\]

\[
= \frac{2\pi}{8} \sum_{k} \left[\frac{\sin(2\pi k/16)}{2\pi k/16} \right]^2 \delta(\omega - \frac{2\pi k}{8})
\]

\(X \) is a real-valued function, its imaginary part is zero. A sketch of \(X \) is shown in figure 1.

Figure 1: Sketch of \(X \) in problem 1. Only the positive frequencies are shown, since \(X(\omega) = X(-\omega) \).
2. **15 points**

(a) Find and sketch the FT of

\[x(t) = \left(\frac{\sin \pi t}{\pi t} \right)^2 e^{-j2\pi \times 10t}. \]

(b) Use Parseval’s theorem to find the energy in the signal \(x \).

Answer

From Table above,

\[\Pi(t) \leftrightarrow \frac{\sin \omega / 2}{\omega / 2}. \]

From Table above,

\[\frac{\sin \pi t}{\pi t} \leftrightarrow 2\pi \Pi(-\omega) = 2\pi \Pi(\omega) \]

From Table above, \([x(t)]^2 \leftrightarrow (1/2\pi)(X * X)(\omega)\), so

\[\left(\frac{\sin \pi t}{\pi t} \right)^2 \leftrightarrow \frac{1}{2\pi} (2\pi)^2 (\Pi * \Pi)(\omega) = 2\pi (\Pi * \Pi)(\omega) \]

\(\Pi * \Pi \) has the triangle shaped graph shown in Figure 2.

(a) The FT of \(x \) is

\[X(\omega) = 2\pi (\Pi * \Pi)(\omega - 2\pi \times 10) \]

and is sketched in Figure 2.

(b) By Parseval’s theorem the energy in \(x \) is

\[\int |x(t)|^2 dt = \frac{1}{2\pi} \int |X(\omega)|^2 d\omega = \frac{2}{2\pi} \int_{0}^{2\pi} \left(\frac{\omega}{2\pi} \right)^2 d\omega = \frac{2}{3} \]
3. **10 points** The following statements are either TRUE or FALSE. If you believe a statement is true, outline a BRIEF PROOF. If you believe it is false, provide a BRIEF COUNTEREXAMPLE.

 (a) If \(x(t), t \in \text{Reals}\), is a real-valued signal, its Fourier transform \(X(f), f \in \text{Reals}\), is also real-valued.

 (b) If \(x(t), y(t), t \in \text{Reals}\), are real-valued signals and \((x * y)(t) = 0, \forall t \in \text{Reals}\), then either \(x\) or \(y\) is identically zero.

 (c) If \(x(t), t \in \text{Reals}\), is a real-valued, baseband signal with bandwidth \(W\) Hz, then the signal \(y(t) = x^4(t), t \in \text{Reals}\), has bandwidth at most \(4W\) Hz.

 (d) If \(x(t), t \in \text{Reals}\) is a real-valued, band-limited signal with bandwidth \(W\) Hz, then the signal \(y(t) = x(2t), t \in \text{Reals}\), has bandwidth \(W/2\) Hz.

 (e) If \(x, y\) are real-valued signals with bandwidth \(W_x, W_y\) Hz, respectively, then the signal \(x + y\) has bandwidth \(W_x + W_y\) Hz.

Answer

(a) **FALSE.** The function \(\forall t, x(t) = \text{sgn}(t)\) is real-valued, but its Fourier transform is \(\forall \omega, X(\omega) = \frac{2}{j \omega}\) which is not real-valued.

(b) **FALSE.** Take a band-limited signal \(x\) for example, \(x(t) = \sin(t)/t\) has bandwidth 1 radian/sec, so \(|X(\omega)| = 0, |\omega| > 1\). Now take \(y(t) = x(t) \cos(10t)\). Then \(Y(\omega) = 1/2[X(\omega - 10)+X(\omega+10)]\). It follows that \(X(\omega)Y(\omega) = 0\) for all \(\omega\). But then \((x * y)(t) = 0\) for all \(t\), even though neither \(x\) nor \(y\) is identically zero.

(c) **TRUE.** \(y \leftrightarrow Y = X * X * X * X\). If \(X(f) = 0\) for \(|f| > W\), then \(X * X * X * X(f) = 0\) for \(|f| > 4W\).

(d) **FALSE.** From the time scale property, \(Y(f) = 1/2 X(f/2)\). So the bandwidth of \(y\) is \(2W \neq W^2\) if \(W \neq 2\).

(e) **FALSE.** Take \(y = x\). Then \(x + y \leftrightarrow 2X\) has bandwidth \(W\).
4. **15 points** The following statements are either TRUE or FALSE. If you believe a statement is true, outline a BRIEF PROOF. If you believe it is false, provide a BRIEF COUNTEREXAMPLE.

(a) The system that takes as input a signal \(m \) and produces its Hilbert transform \(\hat{m} \) as output is an LTI system.

(b) The SSB-USB modulator which takes as input a signal \(m(t), t \in \text{Reals} \), and produces as output the modulated signal \(x(t), t \in \text{Reals} \), is a linear system.

(c) The narrow-band FM system which takes as input the continuous-time signal \(m \) and produces as output the modulated signal \(x \), is a linear system.

(d) The AM-DSB modulator is a time-invariant system.

(e) The signal \(\forall t, x(t) = \cos(2\pi f_c t + \cos(2\pi f_m t)) \) has infinite bandwidth.

(f) It is possible to recover the signals \(A \) and \(\theta \) from the narrowband signal \(\forall t, x(t) = A(t) \cos(2\pi f_c t + \theta(t)) \).

Answer

(a) **TRUE**, because \(\hat{m} = m * h \) where \(h \) is the impulse response of the Hilbert transform.

(b) **TRUE**, because

\[
\forall t, \quad x(t) = [m(t) + j\hat{m}(t)]e^{j\omega_c t},
\]

\[
= (m * (\delta + jh))(t)e^{j\omega_c t},
\]

(where \(h \) is as in part (a) and the operations above are linear.

(c) **FALSE**, because the signal \(x \) is

\[
\forall t, \quad x(t) = \cos 2\pi f_c t - m(t) \sin 2\pi f_c t,
\]

and this is not a linear relation: for example \(x \neq 0 \) even if \(m(t) \equiv 0 \).

(d) **FALSE**. The modulator is a linear, memoryless, time-varying system:

\[
x(t) = m(t) \cos 2\pi f_c t.
\]

(e) **TRUE**. The signal is periodic in \(t \) with period \(1/f_m \) since \(x(t + 1/f_m) = \cos(2\pi f_m (t + 1/f_m)) = \cos(2\pi f_m t) \). It is also an even function of \(t \). Hence \(x \) has a Fourier series representation

\[
x(t) = \sum_{k=0}^{\infty} a_k \cos(k2\pi f_m t),
\]

which has infinite bandwidth.

(f) **TRUE**. Construct the signal \(z \) by

\[
\forall t, \quad z(t) = |x(t) + j\hat{x}(t)|e^{-j2\pi f_c t},
\]

where \(\hat{x} \) is the Hilbert transform of \(x \). Then \(z(t) = A(t)e^{j\theta(t)} \), so \(A(t) = |z(t)| \) and \(\theta(t) = \arg z(t) \).
5. **20 points** Figure 3 is a block diagram of vestigial sideband (VSB) modulation/demodulation. The

[Diagram of VSB modulation-demodulation scheme]

Figure 3: The VSB modulation-demodulation scheme of problem 5

baseband signal \(m \) has FT \(M \) as shown, with bandwidth \(B \) rad/sec. It modulates the carrier \(\cos(\omega_c t) \) \((\omega_c >> B) \) to produce the signal \(u \), which is passed through the VSB filter, whose frequency response \(H(\omega) \) is shown. The result is the transmitted signal \(v \). The coherent receiver multiplies \(v \) by the carrier to produce \(w \), which is then passed through a low pass filter (LPF) to obtain the signal \(x \).

(a) Sketch the FT of \(u, v, \) and \(w \). Carefully mark relevant magnitudes and frequencies.

(b) Show that \(x = \frac{1}{4}m \) if the VSB filter satisfies

\[
H(\omega + \omega_c) + H(\omega - \omega_c) = 1, \text{ for } |\omega| \leq B.
\]

Answer We have

\[
U(\omega) = \frac{1}{2}[M(\omega - \omega_c) + M(\omega + \omega_c)], \quad V(\omega) = \frac{1}{2}H(\omega)[M(\omega - \omega_c) + M(\omega + \omega_c)]
\]

\[
W(\omega) = \frac{1}{2}[V(\omega - \omega_c) + V(\omega + \omega_c)]
\]

\[
= \frac{1}{4} \left[H(\omega - \omega_c)\{M(\omega - 2\omega_c) + M(\omega)\} + H(\omega - \omega_c)\{M(\omega) + M(\omega + 2\omega_c)\} \right]
\]

\[
= \frac{1}{4}M(\omega)[H(\omega - \omega_c) + H(\omega + \omega_c)], \text{ for } |\omega| < B
\]

[Diagram of FTs for problem 5]
Figure 4 shows the FTs for (a). Part (b) follows from the last equation.
6. **10 points** Figure 5 is a block diagram of a digital communication system. The digital channel accepts at its input port any symbol from \{a, b, c, d, e\} and delivers it at its output port. The channel can accept one symbol every \(2 \mu\text{sec}\).

(a) What is the baud rate of the channel? What is its capacity in bits/sec?

(b) A binary source \(m\) produces data at \(1\)Mb/sec. (1 Mb is one million bits.) Is the rate of the source smaller than the capacity? If it is, construct a "coder" that maps the binary source \(m\) into a sequence of symbols \(x\), and a "decoder" that maps \(x\) into a binary sequence \(m'\) such that \(m' = m\).

Answer

(a) The baud rate is \(1/(2 \times 10^{-6}) = 500,000\) symbols/sec. The channel capacity is \(C = \log_2(5) \times 500,000\) bps.

(b) Yes. \(C > 10^6\), since \(\log_2(5) > \log_2(4) = 2\).

The coder should map pairs of bits into distinct symbols, the decoder should do the inverse. They are given by the following assignments:

Coder: \(00 \rightarrow a; 01 \rightarrow b; 10 \rightarrow c; 11 \rightarrow d\)

Decoder: \(a \rightarrow 00; b \rightarrow 01; c \rightarrow 10; d \rightarrow 11\)
7. **20 points** \(m \) is a complex-valued signal with bandwidth \(B_m \) rad/sec whose real and imaginary parts are \(m_1, m_2 \) respectively. Let \(M(\omega), M_1(\omega) \) and \(M_2(\omega) \) be the FT of \(m, m_1 \) and \(m_2 \), respectively.

(a) Find \(M_1 \) and \(M_2 \) in terms of \(M \). Show that the bandwidth of \(m_1, m_2 \) is at most \(B_m \).

(b) Design a modulation and demodulation scheme that can transmit \(m_1 \) and \(m_2 \) over a channel with bandwidth \(2B_m \) centered at frequency \(\omega_c \) rad/sec.

(c) Give a brief mathematical argument to show that the transmitted signal is within the channel bandwidth, and that the receiver can recover both signals.

Answer

(a) \(M(\omega) = \int m(t)e^{-j\omega t}dt; M^*(\omega) = \int m^*(t)e^{j\omega t}dt; M^*(-\omega) = \int m^*(t)e^{-j\omega t}dt \). Since \(m + m^* = 2m_1 \) and \(m - m^* = 2jm_2 \),

\[
M(\omega) + M^*(-\omega) = \int [m(t) + m^*(t)]e^{-j\omega t}dt = 2M_1(\omega)
\]

\[
M(\omega) - M^*(-\omega) = \int [m(t) - m^*(t)]e^{-j\omega t}dt = 2jM_2(\omega)
\]

(b) The modulated signal is

\[
x(t) = m_1(t)\cos(\omega_c t) + m_2(t)\sin(\omega_c t).
\]

To recover the signals we use coherent demodulation. Multiply \(x \) by \(\cos(\omega_c t) \) and pass the product through a LPF with cutoff \(B_m \) to recover \(m_1 \); multiply \(x \) by \(\sin(\omega_c t) \) and pass the product through a LPF with cutoff \(B_m \) Hz to recover \(m_2 \).

(c) We have

\[
x(t) \leftrightarrow X(\omega) = M_1(\omega) + \frac{1}{2}\left[\delta(\omega - \omega_c) + \delta(\omega + \omega_c)\right] + M_2(\omega)\frac{1}{2j}\left[\delta(\omega - \omega_c) - \delta(\omega + \omega_c)\right]
\]

\[
= \frac{1}{2}\left[M_1(\omega - \omega_c) + M_1(\omega + \omega_c)\right] + \frac{1}{2j}\left[M_2(\omega - \omega_c) - M_2(\omega + \omega_c)\right],
\]

which shows that \(|X(\omega)| = 0, ||\omega| - \omega_c| > B_m\).

To show that the demodulation scheme works:

\[
x(t)\cos(2\pi f_c t) = m_1(t)\cos^2(\omega_c t) + m_2(t)\sin(\omega_c t)\cos(\omega_c t)
\]

\[
= \frac{1}{2}[m_1(t) + m_1(t)\cos(2\omega_c t)] + \frac{1}{2}m_2(t)\sin(2\omega_c t)
\]

\[
\rightarrow \frac{1}{2}m_1(t) \text{ after passing through LPF},
\]

and similarly,

\[
x(t)\sin(\omega_c t) = m_1(t)\cos(\omega_c t)\sin(\omega_c t) + m_2(t)\sin^2(\omega_c t)
\]

\[
= \frac{1}{2}m_1(t)\sin(2\omega_c t) + \frac{1}{2}[m_2(t) - m_2(t)\cos(2\omega_c t)]
\]

\[
\rightarrow \frac{1}{2}m_2(t) \text{ after passing through LPF}.
\]