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Gastpar November 16, 2005

Solutions to Exam 2

Last name First name SID

• You have 1 hour and 45 minutes to complete this exam.

• The exam is closed-book and closed-notes; calculators, computing and communication
devices are not permitted.

• No form of collaboration between the students is allowed. If you are caught cheating, you
may fail the course and face disciplinary consequences.

• However, two handwritten and not photocopied double-sided sheet of notes is allowed.

• Additionally, you receive Tables 3.1, 3.2, 4.1, 4.2, 5.1, 5.2, 9.1, 9.2 from the class textbook.

• If we can’t read it, we can’t grade it.

• We can only give partial credit if you write out your derivations and reasoning in detail.

• You may use the back of the pages of the exam if you need more space.

*** Good Luck! ***

Problem Points earned out of

Problem 1 29

Problem 2 28

Problem 3 27

Problem 4 33

Total 117
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Problem 1 (Short Questions.) 29 Points

(a) (4 Pts) For the system in Figure 1,

H(jω) =
{

1, for |ω| ≤ ω0

0, otherwise.
(1)

Sketch the frequency response G(jω) of the overall system between x(t) and y(t) .

!!H(j    )
x(t) y(t)

Figure 1:

Solution:

y(t) = x(t)− x(t) ∗ h(t)
Y (jω) = X(jω)−X(jω)H(jω) = X(jω)(1−H(jω))

G(jω) =
Y (jω)
X(jω)

= 1−H(jω)

Remark: This problem was a hint for the sampling system design in Problem 3.(c).

− 0ω0

1

G(j ω)

ω
ω

(b) (15 Pts) A causal LTI system is described by the following differential equation:

d2

dt2
y(t) + 2

d

dt
y(t) + 2y(t) =

d2

dt2
x(t)− x(t) (2)

Is this system stable? Does this system have a causal and stable inverse system?

Solution: We take the Laplace transform of both sides of the differential equation to find the
transfer function H(s) of the LTI system.

s2Y (s) + 2sY (s) + 2Y (s) = s2X(s)−X(s)

H(s) =
Y (s)
X(s)

=
s2 − 1

s2 + 2s+ 2
=

(s+ 1)(s− 1)
(s− (−1 + j))(s− (−1− j))

The system H(s) has poles at s = −1+j and s = −1−j , and zeros at s = 1 and s = −1 . Since
we are given that H(s) is causal, the region of convergence (ROC) of H(s) is Re{s} > −1 .
Thus the ROC of H(s) includes the jω -axis, which implies that H(s) is stable.
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− j

The inverse system 1
H(s) has poles at s = 1 and s = −1 , and zeros at s = −1 + j and

s = −1 − j . The inverse system (which has a rational transfer function) is causal iff the ROC
of 1

H(s) is the right-half plane. However the inverse system is stable iff the ROC includes the
jω -axis. Therefore the inverse system cannot be both causal and stable.

j

−1 1

Im

Re

− j
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Figure 2: Quadrature modulation.

~

H(j    )

!H(j    )x(t)

y(t)

!

!csin(    t)

cos(    t)c
x(t)

y(t)

r(t)

!

!

c

ccos(    t)

sin(    t)

!

!

G(j    )

G(j    ) !

Figure 3: “Improved” quadrature modulation.

(c) (10 Pts) As you have seen in the homework, “quadrature multiplexing” is the system shown
in Figure 2, where

H(jω) =
{

1, for |ω| ≤ ωM
0, otherwise.

and G(jω) =
{

1, for |ω| ≥ ωc
0, otherwise.

(3)

Both original signals are assumed to be bandlimited: X(jω) = Y (jω) = 0 , for |ω| > ωM ; and
the carrier frequency is ωc > ωM . The interesting feature is that the effective bandwidth of the
signal r(t) is only 2ωM , the same as for a regular AM system with only the signal x(t) . Hence,
y(t) can ride along for free.

Now, your colleague remembers single-sideband AM and suggests to add the filters G(jω) as
shown in Figure 3. The effective bandwidth of the transmitted signal r̃(t) is only ωM , half as
much as in the original quadrature multiplexing system! Show that the “improved” system will
not work. Hint: Find a pair of example spectra X(jω) and Y (jω) for which R(jω) is not zero,
but R̃(jω) = 0 for all ω . Then, argue (in a few keywords) why this invalidates the “improved”
quadrature modulation.

Solution: The basic fact to remember from the homework problem about quadrature modu-
lation is that the spectra overlap and get added up. Consider the example spectra X(jω) and
Y (jω) in the figure below. The spectrum X(jω) is purely real-valued. After multiplying by a
cos(ωct) , it remains a purely real-valued spectrum. The trick is to select the spectrum Y (jω) as
purely imaginary; that way, after multiplying by the sin(ωct), it becomes a purely real-valued
spectrum, and hence, there is a chance for it to cancel out the spectrum X(jω) .

To actually make this happen, we still need to pick the right shape. One example that works is
given in the figure below. Note that if R(jω) looks as sketched in the figure, then R̃(jω) will
be zero — the filter G(jω) removes anything below ωc .
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A few remarks: The signal with purely imaginary spectrum as given in Y (jω) is a real-valued
signal (think of the spectrum of the sin function - it’s purely imaginary). This is because it is
conjugate-symmetric (Y (jω) = Y ∗(−jω) ). Also, there are many other ways to convince your
colleague that the system will not work. A longer approach is to select example spectra and
to show that demodulation as suggested in Figure 3 will not recover the desired data-carrying
signals x(t) and y(t) .
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Problem 2 (Discrete-time processing of continuous-time signals.) 28 Points

r
x(t)

H(j      )!
x[n]Sampling y[n] Conversion of

discrete!time
sequence to
inpulse train

y(t)

>nterval T

1/3
Delay

y[n!1]

!H  (j      )

Figure 4:

For the system in Figure 4,

H(jω) =
{

1, for |ω| ≤ π
T

0, otherwise.
and Hr(jω) =

{
T, for |ω| ≤ π

T
0, otherwise.

(4)

(a) (20 Pts) Give the formula for the overall system response G(jω) , relating x(t) and y(t) .
Also give a sketch of the magnitude |G(jω)|, paying particular attention to the labeling of the
frequency axis. No derivation is necessary to get full credit.

Solution: The difference equation and frequency response of the discrete-time block can be
found as:

y[n] = x[n] +
1
3
y[n− 1]

Y
(
ejΩ
)

= X
(
ejΩ
)

+
1
3
e−jΩY

(
ejΩ
)

Gd
(
ejΩ
)

=
1

1− 1
3e
−jΩ

There is no aliasing because of the filter H(jω) , so the continuous-time system response can be
easily found using Equation 7.25 in OWN.

G(jω) =

{
1

1− 1
3
e−jωT

|ω| ≤ π
T

0 |ω| > π
T

The magnitude |G(jω)| for |ω| < π
T can be found as follows:
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|G(jω)| =
1

|1− 1
3e
−jωT |

=
1

|1− 1
3 (cos(−ωT ) + j sin(−ωT )) |

=
1

|
(
1− 1

3 cos(ωT )
)

+ j
(

1
3 sin(ωT )

)
|

=
1√

1− 2
3 cos(ωT ) + 1

9 cos2(ωT ) + 1
9 sin2(ωT )

=
1√

10
9 −

2
3 cos(ωT )

ω)|

TT−π/ π/

3/4

|G(j

ω

3/2

(b) (8 Pts) For x(t) = ejπt/(2T ) , determine the corresponding output signal y(t) . Your answer
should not contain an integral, but apart from that, there is no need to simplify it down.

Solution: After writing x(t) = ej(π/(2T ))t we see that:

y(t) = G
(
j
π

2T

)
ej(π/(2T ))t =

1
1− 1

3e
−jπ/2 e

jπt/(2T ) =
1

1 + j 1
3

ejπt/(2T )
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Problem 3 (Sampling System Design.) 27 Points

The signal x(t) has the Fourier transform shown in Figure 5.

!
!

!
2"/#"/#$"/#$2"/#

1

!

"/#$"/#

H(j    )

!

1
2

X(j    )

Figure 5:

(a) (5 Pts) As a function of T (as in Figure 5), determine the smallest sampling frequency ωs =
2π/Ts (where Ts is the sampling interval) for which perfect reconstruction can be guaranteed for
the signal x(t) . A graphical justification (sketch with labels on the frequency axis) is sufficient.

Solution: By the sampling theorem, the bandlimited signal x(t) , with X(jω) = 0 for |ω| > 2π
T ,

can be perfectly reconstructed if we sample at frequency ωs ≥ 2
(

2π
T

)
= 4π

T . Graphically, we see
that the shifted replica of X(jω) that is centered at ωs does not overlap with the replica at 0
if ωs − 2π

T ≥
2π
T .

ω

p (j ω)

π2 /Τ−2π/T−ωs ωsπ2 /Τωs −

3

2

1

X

(b) (10 Pts) Consider the signal y(t) = h(t) ∗ x(t) , where h(t) is the impulse response of the
filter H(jω) in Figure 5. Sketch the spectra of the two discrete-time signals

x[n] = x(nT ) (5)
y[n] = y(nT ), (6)

where T is the same as in Figure 5. Which effect explains the difference between x[n] and
y[n] ?

Solution: Now we sample the signals x(t) and y(t) with frequency 2π
T , and then convert the

resulting impulse trains xp(t) and yp(t) to discrete-time signals x[n] and y[n] . In the frequency
domain, Xp(jω) = 1

T

∑
kX(j(ω − 2πk/T )) and X(ejΩ) = Xp(jΩ

T ) (and similarly for Y (ejΩ) ).
Note that sampling scales the vertical axis by 1

T , and converting to discrete-time scales the
frequency axis by T .
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2/T

X(e jΩ )

Ω
4π2π−2π−4π

3/T

4/T

(e jΩ )

Ω
4π2π−2π−4π

Y

3/T

Since we are sampling x(t) at a frequency less than ωs = 4π
T , the shifted replicas of X(jω)

overlap, producing the aliasing effect in X(ejΩ) . In contrast, because y(t) is bandlimited by
π
T , the shifted replicas of Y (jω) do not overlap, and there is no aliasing effect in the spectrum
of Y (ejΩ) .
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(c) (12 Pts) The goal is now to implement a sampler with sampling interval T0 = T/2 , where T
is as in Figure 5. Unfortunately, such a fast sampler is not available in the current technology.
Instead, you have access to the following devices:

• samplers with sampling interval T , where T is the same as in Figure 5 (any number)

• anti-aliasing filters with the frequency response given in Figure 5 (any number)

• continuous-time signal adders/subtractors (any number)

• any discrete-time processing devices (ideal filters included).

Draw the block diagram of a system that takes as an input the signal x(t) (with spectrum as
shown in Figure 5) as outputs the discrete-time signal x0[n] = x(nT0) . Hint: To maximize your
chance of partial credit, give spectral plots of intermediate signals in your system.

Solution: The key insight is that we have to sample different parts of the signal separately.
Clearly, we can low-pass filter the signal x(t) to obtain the signal y(t) in the figure below.
Since y(t) is now bandlimited to π/T , we can sample it with our sampler (interval T ) with
no aliasing. Separately, we want to sample the ”high-pass” part of the signal x(t) . Here, we
can use two standard tricks: first, to get the high-pass part, we can just take x(t) and subtract
out the low-pass part, leading to the signal z(t) in the figure below. Second, in this case, the
resulting signal can be sampled directly with sampling interval T , with no aliasing. This is just
like in the homework problem about band-pass sampling. Alternatively, if we had access to a
continuous-time mixer (multiplication by a cosine function), we could modulate it down before
sampling (but as we said, for our example case, this is not necessary).

The resulting signals y[n] and z[n] now have to be combined. The main insight at this point
is that we need twice the sampling rate in the end, and so, we should upsample both y[n] and
z[n] .

To see how to implement the combining, one really needs the spectral plots of the upsampled
signals, U(ejΩ) and V (ejΩ) : It is immediately clear that we want to low-pass filter U(ejΩ) and
high-pass filter V (ejΩ) . Let’s define:

F (ejΩ) =
{

1, for |Ω| ≤ π
2

0, otherwise.
and G(ejΩ) =

{
T, for |Ω| > π

2
0, otherwise.

Recall that these are really 2π -periodic; we are merely specifying one period. The spectral plots
in the figure on the next page shows that the system below works.

Grading: Most of the points were given for the two key ideas, namely, that we need two different
signal paths, and that we need upsampling.

G(e     )

x[n]1/2

H(j     )

!
Sampler

Sampler

x(t)
F(e      )

j

j

! "

"

2

2

y(t)

z(t)

y[n]

z[n]

u[n]

v[n]

a[n]

b[n]
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Problem 4 (PAM.) 33 Points

Two pulses are suggested for a PAM system:

q1(t) =
{

1, |t| ≤ T/4
0, otherwise

and q2(t) =


−1 −T/4 ≤ t < 0
1, 0 ≤ t ≤ T/4
0, otherwise

The PAM signal is then

xm(t) =
∞∑

n=−∞
s[n]qm(t− nT ), for m = 1, 2. (7)

Throughout this problem, we assume that the data signal is merely s[n] = 1 , for all n .

(a) (6 Pts) Find the powers P1 and P2 of the two PAM signals x1(t) and x2(t) . Solution:
Because x1(t) and x2(t) are periodic, we can calculate their power by looking at one period.

P1 =
1
T

∫ T/2

−T/2
|x1(t)|2dt =

1
T

∫ T/4

−T/4
1dt =

1
2

P2 =
1
T

∫ T/2

−T/2
|x2(t)|2dt =

1
T

∫ T/4

−T/4
1dt =

1
2

(b) (10 Pts) Give the formula for the Fourier series coefficients of the signal x1(t) , and explicitly
evaluate the coefficients a0, a1 and a−1 . Then, do the same for the signal x2(t) .

Solution: The coefficients of x1(t) are in Table 4.2, 6th entry. For us, T1 = T/4 and ω0 =
2π/T , hence

ak =
sin(kπ/2)

kπ
(8)

where the coefficient at k = 0 can be found as usual as the limit of the above expression as
k → 0 , or by noting that the above formula can be written as ak = 1

2sinc(k/2) , where we
remember that sinc(0) = 1 . Thus, a0 = 1/2 , a1 = 1

π and a−1 = 1
π .

Alternatively, you can evaluate by hand:

a0 =
1

T

∫ T/2

−T/2
x1(t)dt =

1

2

ak =
1

T

∫ T/2

−T/2
x1(t)e−jk(2π/T )tdt

=
1

T

∫ T/4

−T/4
e−jk(2π/T )tdt

=
1

T

1

−jk2π/T

(
e−jkπ/2 − ejkπ/2

)
=

1

kπ
sin(kπ/2)
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For the signal x2(t) , let’s first consider a symmetric box of width T/4 , centered at zero, and
repeated at intervals of T . Call this signal v(t) . Hence, again from the table, with T1 = 1/8 ,
we find the FS coefficients of v(t) :

ck =
sin(kπ/4)

kπ
=

1
4

sinc(k/4). (9)

Clearly, x2(t) = v(t− T/8)− v(t+ T/8) , and hence, using the second property (time shifting)
in Table 3.1, we find the FS coefficients of the signal x2(t) as

bk = cke
−jkπ/4 − ckejkπ/4 (10)

=
1
4

sinc(k/4)(−2j) sin(kπ/4) (11)

= − j
2

sinc(k/4) sin(kπ/4) (12)

Thus, b0 = 0, b1 = − j
π and b−1 = j

π .

Alternatively, you can evaluate by hand:

b0 =
1

T

∫ T/2

−T/2
x2(t)dt = 0

bk =
1

T

∫ T/2

−T/2
x2(t)e−jk(2π/T )tdt

=
1

T

∫ 0

−T/4
−e−jk(2π/T )tdt+

1

T

∫ T/4

0

e−jk(2π/T )tdt

=
1

T

1

jk(2π/T )

(
1− ejkπ/2

)
− 1

T

1

jk(2π/T )

(
e−jkπ/2 − 1

)
=

1

jk2π

(
2− ejkπ/2 − e−jkπ/2

)
=

1

jkπ
(1− cos(kπ/2))

Exercise: Show that the above two formulas for bk are, in fact, equal.
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(c) (7 Pts) To actually transmit our PAM signal, we first low-pass filter it:

x̃m(t) = h(t) ∗ xm(t), where H(jω) =
{

1, for |ω| ≤ 10π
T

0, otherwise.
(13)

Then, we transmit the signals y1(t) = x̃1(t) cos(40π
T t) and y2(t) = x̃2(t) cos(40π

T t) . Sketch
the Fourier transforms of these two signals in the plots provided below, carefully labeling the
frequency axis. In the magnitude plots (i.e., |Y1(jω)| and |Y2(jω)| , respectively), the amplitudes
need not be exact. Remark: The current labels on the frequency axis in the plots are for your
convenience only. If you prefer, you can cross them out and start from scratch.

Solution: Since x1(t) is periodic, its spectrum X1(jω) is a “line spectrum”, i.e., composed
of delta functions. From Table 4.2, first entry, the delta functions are spaced 2π/T apart (the
fundamental frequency of x1(t) ), and their amplitudes are 2πak , where ak are the Fourier
series coefficients of x1(t) :

X1(jω) = 2π
∞∑

k=−∞
akδ(ω − k

2π
T

). (14)

The low-pass filtering throws away anything at frequencies higher than 10π/T , i.e., only the
center and 5 delta functions on each side of the origin survive, but otherwise, the spectrum
X̃1(jω) looks exactly like the spectrum of X1(ω) :

X̃1(jω) = 2π
5∑

k=−5

akδ(ω − k
2π
T

). (15)

Multiplying by cos(40π
T t) simply places two copies of the spectrum of X̃1(jω) , one centered at

40π/T , the other at −40π/T . To get the amplitudes right (but no points were taken off for
minor errors in the amplitudes), remember that the spectrum of the cosine consists of two delta
functions of amplitude π each, and the multiplication property has a factor of 1/(2π) , hence,

Y1(jω) =
2π · π

2π

(
5∑

k=−5

akδ(ω − k
2π
T
− 40π

T
) +

5∑
k=−5

akδ(ω − k
2π
T

+
40π
T

)

)
. (16)

For the signal y2(t) , the argument is exactly the same, leading to

Y2(jω) =
2π · π

2π

(
5∑

k=−5

bkδ(ω − k
2π
T
− 40π

T
) +

5∑
k=−5

bkδ(ω − k
2π
T

+
40π
T

)

)
. (17)
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(d) (10 Pts) The communication channel’s effect on the signal can be described by the following
band-pass filter:

Hchannel(jω) =


sin2(ωT/4− π) for 36π/T < |ω| < 38π/T
1, for 38π/T ≤ |ω| ≤ 42π/T
sin2(ωT/4− π) for 42π/T < |ω| < 44π/T
0, otherwise.

(18)

The channel output signal is then z1(t) = y1(t) ∗ hchannel(t) and z2(t) = y2(t) ∗ hchannel(t) ,
respectively. Assuming that s[n] = 1 , for all n , find the power of z1(t) and z2(t) . These are
the received powers. Which pulse is more efficient for transmission across this channel?

Solution: The key insight is that z1(t) is still a periodic signal. Hence, its power is calculated
as

Pr1 =
1
T

∫
T
|z1(t)|2dt. (19)

From Parseval, this is the same as

Pr1 =
∞∑

n=−∞
|ck|2, (20)

where ck are the Fourier series coefficients of the signal z1(t) . From Part (c), we know the
Fourier Transform Z1(jω) : Passing Y1(jω) through the bandpass filter, only 6 delta pulses
survive, namely the three centered around 40π/T and the three centered around −40π/T . To
find the Fourier series coefficients, we have to divide the amplitude of the delta function by 2π
(see Table 4.2, first entry), and so we can read directly our of the figure:

|c20| = |c−20| = 1/4, |c19| = |c−19| = c21 = c−21 = 1/(2π), (21)

and all other Fourier series coefficients are zero, from which we find

Pr1 =
∞∑

n=−∞
|ck|2 = 2 · 1/16 + 4 · 1/(2π)2 =

1
8

+
1
π2
. (22)

By the same token, we can read out the Fourier series coefficients for the signal z2(t) , and find

Pr2 =
∞∑

n=−∞
|dk|2 = 4 · 1/(2π)2 =

1
π2
. (23)

Hence, the received power for the pulse x1(t) is higher, and we conclude that this pulse is more
efficient.

Note: There is also a subtlety that we swept under the carpet. Really, it is not clear whether
both pulses have the same transmitted power — We only calculated the powers of x1(t) and
x2(t) , respectively, but the transmitted signals, really, are y1(t) and y2(t) . These powers are
most easily found along the lines of the above calculation, but we would need some more of the
Fourier series coefficients.
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