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Solutions to Exam 1

Last name First name SID

• You have 1 hour and 45 minutes to complete this exam.

• The exam is closed-book and closed-notes; calculators, computing and communication
devices are not permitted.

• No form of collaboration between the students is allowed. If you are caught cheating, you
may fail the course and face disciplinary consequences.

• However, one handwritten and not photocopied double-sided sheet of notes is allowed.

• Additionally, you receive Tables 3.1, 3.2, 4.1, 4.2, 5.1, 5.2 from the class textbook.

• If we can’t read it, we can’t grade it.

• We can only give partial credit if you write out your derivations and reasoning in detail.

• You may use the back of the pages of the exam if you need more space.

*** Good Luck! ***

Problem Points earned out of

Problem 1 26

Problem 2 20

Problem 3 22

Problem 4 29

Problem 5 20

Total 117
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Problem 1 (Properties of Systems.) 26 Points

(a) (4 Pts) True or false: A BIBO stable, causal, linear system must be time-invariant. Give a
proof if you believe it’s true. Give a counterexample if you believe it’s false.

The correct answer is false. Some possible counterexamples include y(t) = sin(t)x(t) and
y(t) = x

(

t
2

)

u(t)

Note: Many students provided counterexamples that either were not causal (such as y(t) =
x(2t) ), or not BIBO stable (such as y(t) = tx(t) ).

(b) (6 Pts) True or false: If the (discrete-time) input to a linear, time-invariant system is periodic
with period N, then its output must also be periodic with period N. Give a proof if you believe
it’s true. Give a counterexample if you believe it’s false.

The correct answer is true. This can be proven by writing out the convolution sum for the LTI
system, and then using the periodicity of the input signal.

y(n + N) =

∞
∑

k=−∞
h(k)x(n + N − k) (1)

=

∞
∑

k=−∞
h(k)x(n − k) (2)

= y(n) (3)

Because y(n + N) = y(n) for any n , the output is periodic with period N
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(c) (16 Pts) A system with input x(t) and output y(t) can be described as follows:

y(t) =

(
∫ 0

−∞
eτ1x(t − τ1)dτ1

)(
∫ ∞
−∞ e−|τ2−t|x(τ2)dτ2)

(4)

Is this a BIBO stable system? Carefully develop your argument.

The correct answer is that this system is not BIBO stable. An example input is

x(t) =

{

e
1−e , −1 ≤ t < 0,

0, otherwise.
(5)

For this input, let’s consider y(t = 0) : For the exponent, we find

∫ ∞

−∞
e−|τ2−t|x(τ2)dτ2 =

e

1 − e

∫ 0

−1
e−|τ2|dτ2 =

e

1 − e

∫ 1

0
e−τ2dτ2 (6)

=
e

1 − e

(

1 − e−1
)

= −1 (7)

Hence, the exponent is −1 . It is trivial to see that the base is zero, which leads to an unbounded
output (“1/0”).

Credit was also given for a correct argument showing that both the base and the exponent are
bounded if the input signal x(t) is bounded. Note that this does not imply stability: If the
exponent is negative, and the base very small, the resulting output is very large (see the counter-
example above). However, the argument of showing that both the base and the exponent are
bounded for bounded input x(t) is sufficient to show that a close relative of the above system,
namely the system

y(t) =

(
∫ 0

−∞
eτ1x(t − τ1)dτ1

)|∫ ∞
−∞ e−|τ2−t|x(τ2)dτ2|

. (8)

is (BIBO) stable.
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Problem 2 (Convolution.) 20 Points

Let

x(t) =







−t, −1 ≤ t < 0,
1, 0 ≤ t ≤ 1,
0, otherwise.

(9)

and

y(t) =

{

1, |t| ≤ 1
2 ,

0, otherwise.
(10)

Sketch x(t)∗y(t) , carefully labeling both axes. Note: The correct plot with the correct labeling
on both axes will get full credit; there is no requirement to write down formulas.

We can compute the convolution of x(t) and y(t) directly, or use linearity to compute two
simpler convolutions, x(t) ∗ y(t) = (x1(t) + x2(t)) ∗ y(t) = x1(t) ∗ y(t) + x2(t) ∗ y(t) .

x2(t)

t

1

0.5−0.5

y(t)

1

x(t)

−1 1 t −1 0 t

1

x1(t)

t10

1

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
0

0.5

1
x1(t)  *  y(t)

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
0

0.5

1
x2(t)  *  y(t)

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
0

0.5

1
x(t)  *  y(t)
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Problem 3 (Short-time Fourier Transform.) 22 Points

To compute a Fourier transform requires us to know the entire signal x(t) , for −∞ < t < ∞ .
In practice, when doing spectral analysis, we cannot usually wait that long. One way out of
this dilemma is to perform what people often call the short-time Fourier transform: Instead of
looking at the actual Fourier transform of x(t) , we consider

xw(t) = x(t)w(t), (11)

where w(t) is sometimes called a “window”. The short-time Fourier transform of x(t) with
respect to the window w(t) is then simply Xw(jω) , the Fourier transform of xw(t) .

(a) (16 Pts) An obvious first choice of a window is simply to cut the signal x(t) at some point,
i.e.,

w(t) =

{

1, |t| ≤ T
0, otherwise.

(12)

For the special case x(t) = cos(ω0t) find the formula for the short-term Fourier transform
Xw(jω) . Give a sketch of Xw(jω) . Use T = 5π/ω0 for the sketch.

In OWN Table 4.2 of Fourier transform pairs, we can find the Fourier transforms of x(t) and
w(t) .

X(jω) = πδ(ω − ω0) + πδ(ω + ω0)

W (jω) =
2 sin(ωT )

ω

The multiplication property of the Fourier transform, given in OWN Table 4.1, tells us that mul-
tiplication in the time domain corresponds to convolution in the frequency domain. Remember
that convolution of a function with an impulse simply shifts the function.

Xw(jω) =
1

2π

∫ ∞

−∞
X(jθ)W (j(ω − θ))dθ

=
1

2π

∫ ∞

−∞
π(δ(θ − ω0) + δ(θ + ω0))

2 sin((ω − θ)T )

ω − θ
dθ

=
sin((ω − ω0)T )

ω − ω0
+

sin((ω + ω0)T )

ω + ω0

Thus the Fourier transform of the windowed signal xw(t) is the sum of two sinc functions shifted
to center around ω = ±ω0 , each with peak height T . A plot of Xw(jω) is shown for T = 1
and ω0 = 5π

T .
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(b) (6 Pts) Explain what happens as T and ω0 are varied. You may use sketches to do this.
Hint: Consider the “extreme” cases, T becomes very large or very small.

As T becomes large and ω0 is held constant, the sinc functions become narrow and tall. In
the limit as T → ∞ , the sinc functions get squeezed into impulses centered at ±ω0 , and
Xw(jω) → X(jω) . This makes sense because as the time window w(t) becomes infinitely wide,
windowing will have no effect.

On the other hand, as T becomes small and ω0 is held constant, the sinc functions become
wide and short. In the limit as T → 0 , the sinc functions flatten, and Xw(jω) → 0 . This also
makes sense because as the window becomes infinitely narrow, it does not pass the signal x(t) .

Now varying ω0 while holding T constant has the effect of shifting the two sinc functions
outwards for large values of ω0 , and inwards for small values of ω0 .
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Problem 4 (System.) 29 Points

Consider the causal, linear, time-invariant discrete-time system that obeys the following differ-
ence equation:

y[n] − ay[n − 2] = x[n] − bx[n − 1] (13)

(a) (6 Pts) Give a system diagram, using only multipliers, adders, and delay elements.

−b

a

x[n] y[n]

D D

D

(b) (7 Pts) Find the frequency response of this system.

We take the DTFT of both sides of the difference equation to see that

Y (ejω) − ae−jω2Y (ejω) = X(ejω) − be−jωX(ejω)

H(ejω) =
Y (ejω)

X(ejω)
=

1 − be−jω

1 − ae−jω2
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(c) (8 Pts) Find the impulse response of this system.

H(ejω) =
1

1 − ae−jω2
− be−jω

1 − ae−jω2

One way to find the impulse response is to combine the entry in Table 5.2 which shows that the
inverse transform of Z(ejω) = 1

1−ae−jω is z[n] = anu[n] with the time expansion property in
Table 5.1

This combination shows that the inverse transform of 1
1−ae−jω2 is given by

z(2)[n] =

{

an/2u[n/2] n even
0 n odd

Finally, using the linearity of the DTFT, and applying the time shifting property in Table 5.1
to the second term in H(ejω) , we see that

h[n] =

{

an/2u[n/2] n even

−ba(n−1)/2u[(n − 1)/2] (n − 1) even

h[n] =

{

an/2u[n] n even

−ba(n−1)/2u[n] n odd

A second way to find the impulse response is by computing the partial fraction expansion of
H(ejω)

H(ejω) =
1 − be−jω

1 − ae−jω2
=

A

1 −√
ae−jω

+
B

1 +
√

ae−jω

1 − be−jω = A + A
√

ae−jω + B − B
√

ae−jω

Now, equating the constant terms and the e−jω terms, we see that

1 = A + B

−b =
√

aA −
√

aB

We can solve this system of equations to find that A =
√

a−b
2
√

a
and B =

√
a+b

2
√

a

H(ejω) =

√
a−b

2
√

a

1 −√
ae−jω

+

√
a+b

2
√

a

1 +
√

ae−jω

Finally, we use Table 5.2 to find
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h[n] =

√
a − b

2
√

a
(
√

a)nu[n] +

√
a + b

2
√

a
(−

√
a)nu[n] (14)

=

{

an/2u[n] n even

−ba(n−1)/2u[n] n odd
(15)

(d) (8 Pts) For what values of a and b is the system stable?

A system is stable if

∞
∑

k=−∞
|h[k]| < ∞

For the impulse response in part (c)

∞
∑

k=−∞
|h[k]| =

∞
∑

k = 0,
even

|a|k/2 +
∞

∑

k = 1,
odd

|b||a|(k−1)/2 (16)

=

∞
∑

m=0

|a|m +

∞
∑

m=0

|b||a|m (17)

These two summations are finite, and therefore the system is stable, when |a| < 1 and |b| < ∞
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Problem 5 (Non-linear System.) 20 Points

A simple non-linear system is characterized by

y(t) =

(
∫ ∞

−∞
h(t − τ)x(τ)dτ

)2

, where h(t) = 2sinc(2t) (18)

We would like to approximate this system by a linear and time-invariant system. The following
two systems have been suggested. The first suggested LTI system has impulse response

h1(t) = h(t). (19)

and we denote its output by ỹ1(t) . The second suggested LTI system has frequency response

H2(jω) =

{

2 − |ω|/(2π), |ω| ≤ 2π
0, otherwise,

(20)

and we denote its output by ỹ2(t) .

(a) (15 Pts) For the special input signal x(t) = 3sinc(3t), find the errors

Em =

∫ ∞

−∞
(y(t) − ỹm(t))2dt, for m = 1, 2. (21)

Which system incurs a smaller error, h1(t) or h2(t)?

The first task is to convert all signals to the frequency domain. Here, this is easy, simply using
the tables:

H(jω) = H1(jω) =

{

1, |ω| ≤ 2π
0, otherwise,

(22)

and

X(jω) =

{

1, |ω| ≤ 3π
0, otherwise.

(23)

Next, we define the signal

z(t) =

∫ ∞

−∞
h(t − τ)x(τ)dτ, where h(t) = 2sinc(2t), (24)

or, in frequency domain,

Z(jω) = H(jω)X(jω) = H(jω) in this especially simple case. (25)

In terms of z(t) , we can simply write y(t) = z2(t) , and using the multiplication property,

Y (jω) =
1

2π
Z(jω) ∗ Z(jω) =

1

2π
H(jω) ∗ H(jω). (26)

Since H(jω) is just a box, let’s do a graphical (“flip-and-drag”) convolution. A box convolved
with a box gives a triangle, and we only need to know three things. Straightforwardly, we find
that it’s a triangle from −4π to 4π , of height 2 at ω = 0, as illustrated in the figure.
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Next, we find the outputs of two proposed LTI systems when the input is the given (very simple)
x(t) . We find

Ỹ1(jω) = H1(jω)X(jω) = H(jω) and Ỹ2(jω) = H2(jω)X(jω) = H2(jω). (27)

To find the errors, we use Parseval:

Em =

∫ ∞

−∞
(y(t) − ỹm(t))2dt, for m = 1, 2. (28)

=
1

2π

∫ ∞

−∞
|Y (jω) − Ỹm(jω)|2dω (29)

The terms Y (jω) − Ỹm(jω) can be read straight out of the graphs.

4π

Y(j      ) Y(j      )

Y   (j      )
1

Y   (j      )2

Y(j      ) − Y    (j      )Y(j       ) − Y   (j      )1 2

ω

ω ω

ω ω

ωω

ω

ω

ωω

ω

ωω

2

4π−4π

−2π 2π

1

2

−4π 4π

2π

2π

2π−2π −2π

−2π

−4π 4π

11

−4π

Now, we still have to square the error spectra, and then integrate. One way of doing this quickly
and efficiently is to note that the error for the first system consists of 4 little triangles (that need
to be squared). Hence, it is sufficient to just calculate it for one single such triangle, i.e.,

E1 = 4 · 1

2π

∫ 2π

0
(1 − ω/(2π))2dω = 4 · 1

2π

∫ 2π

0
(ω̃/(2π))2dω̃ (30)

= 4 · 1

2π

1

(2π)2

[

ω3

3

]2π

0

=
4

3
, (31)

using the substitution ω̃ = 2π − ω . The second error looks very similar, but it only has two,
rather than four, little triangles, hence

E2 =
E1

2
=

2

3
. (32)

Clearly, the system H2 incurs a smaller error.
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(b) (5 Pts) Repeat Part (a) for the input signal x(t) = cos(2π
3 t), this time finding the power of

the error signal y(t) − ỹm(t) , for m = 1, 2 . In this case, which system incurs a smaller error,
h1(t) or h2(t)?

The first step is again to notice that the filter h(t) leaves the input signal unchanged, i.e., the
desired output signal is merely

y(t) = cos2(
2π

3
t). (33)

You can again use the multiplication property, or you can do it directly to find

y(t) =
1

2
+

1

2
cos(

4π

3
t). (34)

The output of the first candidate system is very easy to find: as we said, the system h(t) leaves
the input unchanged, hence:

ỹ1(t) = cos(
2π

3
t). (35)

The power of the first error P1 is

P1 = lim
T→∞

1

2T

∫ T

−T
(y(t) − ỹ1(t))

2dt = lim
T→∞

1

2T

∫ T

−T

(

1 +
1

2
cos(

4π

3
t) − cos(

2π

3
t)

)2

dt(36)

The signal in parentheses is a periodic signal of fundamental period 3 , hence

P1 =
1

3

∫ 3

0

(

1 +
1

2
cos(

4π

3
t) − cos(

2π

3
t)

)2

dt (37)

I would solve this using Parseval: the Fourier coefficients can be read out directly: a0 = 1
2 ,

a1 = a−1 = −1
2 , and a2 = a−2 = 1

4 . All other Fourier coefficients are zero. Hence,

P1 = a2
0 + 2a2

1 + 2a2
2 =

1

4
+ 2 · 1

4
+ 2 · 1

16
=

7

8
. (38)

For the second candidate system, we can use the frequency response property, rewriting cos(2π
3 t) =

1
2(ej 2π

3
t + e−j 2π

3
t) as follows:

ỹ2(t) =
1

2

(

H2(j
2π

3
)ej 2π

3
t + H2(−j

2π

3
)e−j 2π

3
t

)

(39)

But thanks to the nice symmetry of H2 , we find H2(j
2π
3 ) = H2(−j 2π

3 ) = 5
3 , and hence

ỹ2(t) =
5

3
cos(

2π

3
t). (40)

By the same token, the error signal y(t) − ỹ2(t) is periodic with period 3 , but the Fourier
coefficients are now a0 = 1

2 , a1 = a−1 = −5
6 , and a2 = a−2 = 1

4 , and therefore

P1 = a2
0 + 2a2

1 + 2a2
2 =

1

4
+ 2 · 25

36
+ 2 · 1

16
≈ 1.764. (41)

Here, this time, system H1 incurs a smaller error.
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