If you encounter any technical problems during the entire exam period, Zoom Jack Hayward Cooke at https://berkeley.zoom.us/j/93271902365
Label the final pdf file with your name and the words "3AExam1" (namely: Last Name, First Name, 3AExam1) and upload it to Gradescope.

To complete this page in AcrobatPro, click on "Comments" and use the "Text" function

EXAMINATION 1

Chemistry 3A

Name:
Print first name before second! Use capital letters!

SID \#:
Make sure the number is correct!

GSI (if you are taking Chem 3AL): \qquad
Peter Vollhardt
February 26, 2022

Please provide the following information if applicable.

Making up an I Grade
If you are, please indicate the semester during which you took previous Chem 3A and the instructor:

Semester

Instructor
Auditor \qquad

This test should have 15 numbered pages. A good piece of advice: Read carefully over the questions (at least twice); make sure that you understand exactly what is being asked; avoid sloppy entries. Good Luck!
"To answer the questions in AcrobatPro, click on the "Tools" tab in the top left, then scroll down and open the "Comments" tool, then use the "Text" or "Draw" functions, as applicable. For the latter, you will only need the "Line", "Rectangle", and "Oval" options. Keep saving your document as you complete it!

Please write the answer you wish to be graded in the boxed spaces provided.
I. [36 Points] Name, complete the drawing, or choose one given answer, as appropriate, the following molecules according to the IUPAC rules.
a.

(No stereochemistry)
5-(2-Fluoro-2-iodoethyl)-2,8-dimethyInonane
b.
(1S,3R)-3-Bromo-1-chloro-1-cyclobutylcyclohexane
(Complete the stencil in the box. Note: The hashed/wedged lines signify dangling bonds, not methyl groups. Place the four missing substituents at the end of these bonds. For "cyclobutyl", use the letters "Cyc")

c.

(3S,4S)-3-Bromo-3,4-dimethylhexane
(Name this enantiomer)
d.
(1 R,2S-2-Chloro-1-methylbutyl)cyclopropane
(Complete the Fischer stencil in the box)

e.

(2R,3S)-1,1,2,3-Tetrabromobutane
f.
(1R,2R,3R)-1,2-Dicyclobutyl-3-hexylcyclopentane
(Circle the correct answer in the box)

II. [30 Points]

TABLE 1-1 Partial Periodic Table

Period							Halogens	Noble gases
First	H^{1}							He^{2}
Second	$\mathrm{Li}^{\mathbf{2}, 1}$	$\mathrm{Be}^{2,2}$	$\mathrm{B}^{2,3}$	$\mathrm{C}^{2,4}$	$\mathrm{N}^{2,5}$	$\mathrm{O}^{2,6}$	$\mathrm{F}^{2,7}$	$\mathrm{Ne}^{2,8}$
Third	$\mathrm{Na}^{2,8,1}$	$\mathrm{Mg}^{2,8,2}$	$\mathrm{Al}^{2,8,3}$	$\mathrm{Si}^{2,8,4}$	$\mathrm{P}^{2,8,5}$	$\mathrm{S}^{2,8,6}$	$\mathrm{Cl}^{2,8,7}$	$\mathrm{Ar}^{2,8,8}$
Fourth	$\mathrm{K}^{2,8,8,1}$						$\mathrm{Br}^{2,8,18,7}$	$\mathrm{Kr}^{2,8,18,8}$
Fifth							$\mathrm{I}^{2,8,18,18,7}$	$\mathrm{Xe}^{2,8,18,18,8}$

Pauling Electronegativities

Write or complete the Lewis octet structure for each of the following two molecules (a. and b.). Remember to assign charges, if any, to atoms! Do not forget to draw any (vertical) lone electron pairs (use the colon mark, as appropriate)!
a.

$$
\left[\begin{array}{l}
2-\mathrm{C} \\
: \mathrm{C} \\
\mathrm{~S}
\end{array}=\ddot{\mathrm{P}}\right]^{-}
$$

b.

The central P in P_{3} - is $s p$ hybridized. What is the geometry of $\mathrm{P}_{3}-$? Place an " x " mark into the box next to your answer.

Linear
Bent
c. The following structure has two octet resonance forms. Complete the partial structures below and circle the better one.

d. Why is resonance in molecules energetically advantageous? Answer in your own words in the box (one sentence suffices). Reminder: Do not copy and paste from anywhere, as my program will immediately flag it.

Spreading out electron density minimizes electron repulsion.
e. In the boxes provided, enter the hybridization at oxygen in the following four species.

$s p^{2}$
$s p^{2}$
$s p^{2}$
$s p^{3}$
III. [20 Points]

Table 2.2 Relative Acidities of Common Compounds $\left(25^{\circ} \mathrm{C}\right)$

Using the data in the Table above and your chemical intuition, indicate the direction of the equilibria shown below in the respective boxes provided.
a.

Equilibrium lies to the

b.

Equilibrium lies to the

c. BH_{3} is a stronger Lewis acid than $\mathrm{CH}_{3} \mathrm{OBH}_{2}$. Why? Explain in the box.
$\mathrm{CH}_{3} \mathrm{OBH}_{2}$ has an octet structure that features donation of a lone pair to boron.
IV. [25 Points] Consider the two structural renditions of (1-bromo-2-methylpropyl)cyclohexane, 1 and 2, shown below.

1

2
a. What is the relationship between $\mathbf{1}$ and $\mathbf{2}$? Place an X mark next to the correct answer.
\square Constitutional isomers
\square EnantiomersDiastereomers
x Rotamers
b. Draw the Newman projection \mathbf{A} of 1 along the view depicted by the skull below by completing the Newman stencil in the box provided. You can use CH 3 (no subscript) for the methyl group and Cy for the cyclohexyl substituent.

c. Draw the Newman projections B and C of 1 arising from the clockwise rotation of the back carbon by successive 120°.

B

C
d. Which one of these staggered rotamers would you consider to be the most hindered and therefore of highest energy? Circle your answer below.
A
B
C
V. [38 Points]
a. Draw the products of the monochlorination of enantiomer \mathbf{A} in the boxes below. The boxes are organized by location of attack. Add all missing substituents to the Fischer stencils provided (again, no subscripts needed, i.e. $\mathrm{CH} 3, \mathrm{CCl} 3$, etc.) Caution: In each box, there are more stencils than you will need. You will lose points for writing more products than required.

(S)-1,1,1,2-tetrachloro-2,3-dimethylbutane

b. Once you have completed part a., add the R or S designation to any stereocenters in your products.
c. How many optically active products are generated in the preceding radical chlorination of \mathbf{A} ? Circle your answer.
All of them None of them One Two Three
d. Does the preceding radical chlorination of \mathbf{A} result in any diastereomeric products? Circle your answer.

e. If your answer to d. is yes, circle the position of attack (below) that results in such a products.

VI. [15 Points]

The monochlorination of pure enantiomer 1 gives the dichloro isomers A-D. a. Circle the applicable properties written below each product.

b. The selectivity for the respective hydrogens in this chlorination is tert : sec : prim = 5: 4:1. In the box below, give the expected ratio of all-tertiary to all-secondary to all primary $\mathrm{C}-\mathrm{H}$ activation products in whole numbers (in other words, no need to normalize the ratio).

Ratio of tert : sec : prim C-H activation products $=15: 8: 12$
c. Products \mathbf{A} and \mathbf{B} are formed in unequal amounts. Why? Explain in one sentence in the box.

The stereocenter next to the intermediate radical renders the two faces of the latter unequal
VII. [18 Points]

Table 4-3

Change in Free Energy on Flipping from the Cyclohexane Conformer with the Indicated Substituent
Equatorial to the Conformer with the Substituent Axial

Note: In all examples, the more stable conformer is the one in which the substituent is equatorial.
Using the values in the Table above and the cyclohexane stencils provided, show the structures of the most stable conformers of \mathbf{A}, \mathbf{B}, and \mathbf{C}, respectively. For each, place an " X " in the box next to the correct energy of the "ring flip" to the other conformer. Make sure to "cap off" all axial and equatorial bonds that are explicitly shown with substituents or H atoms.

A: cis-1,2-Dibromocyclohexane

or conformer substituent

B:

Use t-Bu for this

C: trans-1-Chloro-4-fluorocyclohexane
ΔG° ring flip

VIII. [25 Points]
a. Answer the questions in one sentence in the respective boxes.

1. Why is the $\mathrm{C}-\mathrm{H}$ bond in ethane weaker than that in methane?

The ethyl radical is stabilized by hyperconjugation
2. Why is twist-boat cyclohexane more stable than the boat form?

It has less eclipsing interactions
3. Why is the F-F bond so weak, compared to the other $\mathrm{X}-\mathrm{X}$ bonds?

The two sets of three lone pairs are comparatively close
4. Why are radical fluorinations unselective?

The abstraction of H by F^{*} features an early transition state with little radical character on carbon
b. Which one of the following potential-energy diagrams describes the 120° rotation of ethane? Circle the correct answer:
(A)
(A)

(C)

(B)

(D)

IX.
[47 Points]
Table 3.1 Bond-Dissociation Energies of Various A-B Bonds in the Gas Phase [DH° in $\mathrm{kcal} \mathrm{mol}^{-1}\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$]

A in A-B	B in A-B						
	-H	-F	-Cl	-Br	-I	-OH	- NH_{2}
H-	104 (435)	136 (569)	103 (431)	87 (364)	71 (297)	119 (498)	108 (452)
CH_{3} -	105 (439)	110 (460)	85 (356)	70 (293)	57 (238)	93 (389)	84 (352)
$\mathrm{CH}_{3} \mathrm{CH}_{2}$ -	101 (423)	111 (464)	84 (352)	70 (293)	56 (234)	94 (393)	85 (356)
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2}$ -	101 (423)	110 (460)	85 (356)	70 (293)	56 (234)	92 (385)	84 (352)
$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}-$	98.5 (412)	111 (464)	84 (352)	71 (297)	56 (234)	96 (402)	86 (360)
$\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}$ -	96.5 (404)	110 (460)	85 (356)	71 (297)	55 (230)	96 (402)	85 (356)

Note: (a) $D H^{\circ}=\Delta H^{\circ}$ for the process $\mathrm{A}-\mathrm{B} \rightarrow \mathrm{A} \cdot+\cdot \mathrm{B}$. (b) These numbers are being revised continually because of improved methods for their measurement. (c) The trends observed for $\mathrm{A}-\mathrm{H}$ bonds are significantly altered for polar A-B bonds because of dipolar contributions to DH°.

a. Hydrogen, H_{2}, reacts with fluorine explosively to generate HF [equation (1)]. Give the bond dissociation energies ($\mathrm{kcal} \mathrm{mol}^{-1}$) in the three boxes provided, using the relevant data in the Tables above.

b. Calculate the ΔH^{P} value ($\mathrm{kcal} \mathrm{mol}^{-1}$) for reaction (1). Show your work.

$$
\Delta H^{\circ}(1): 104+38-(2 \times 136)=-130 \mathrm{kcal} / \mathrm{mol}
$$

c. Compare equation (1) with that for the reaction of hydrogen peroxide with hydrogen to give water, equation (2). The ΔH° for this process is measured to be $-83 \mathrm{kcal} \mathrm{mol}^{-1}$.

Fill in the first and last box above with the relevant data, and calculate the strength of the $\mathrm{HO}-\mathrm{OH}$ bond ($\mathrm{kcal} \mathrm{mol}^{-1}$) in the following box. Show your work.

$$
\begin{array}{ll}
\mathrm{HO}-\}-\mathrm{OH} & 104+\mathrm{a}-(2 \times 119)=-83 \\
& \mathrm{a}=+51 \mathrm{kcal} \mathrm{~mol}^{-1}
\end{array}
$$

The following three problems should be answered on two consecutive separate pages of hard copy white paper using a dark (at least \#2) pencil. Label these pages "IX.d" and "IX.e+f", respectively. Ascertain that your drawings are clearly visible. When you are finished, scan the pages on your device with a suitable scanning app (do not use CamScanner) in the order IX.d, followed by IX.e+f, save the document as a pdf file, and add it to this file, using the "Combine Files" feature on AcrobatPro. Make sure to set up the correct order of the two; the combined file should feature your scanned pages at the end.
Label the final pdf file with your name and the words "3AExam1" (namely: Last Name, First Name, 3AExam1) and upload it to Gradescope.
d. Formulate the two propagation steps for reaction (2). Show electron-pushing fishhook arrows.

Propagation step 1

Propagation step 2

e. Calculate the respective ΔH° values ($\mathrm{kcal} \mathrm{mol}^{-1}$) for the two propagation steps. Show your work.

Propagation step 1

$$
\begin{gathered}
\Delta H^{\circ}=119-104=-15 \mathrm{kcal} \mathrm{~mol}^{-1} \\
\text { Propagation step } 2 \\
\Delta H^{\circ}=51-119=-68 \mathrm{kcal} \mathrm{~mol}^{-1}
\end{gathered}
$$

f. Which of the two reactions (1) and (2) would be the faster one and why? Answer in one sentence.

Reaction (1) is likely faster because the rate-determining step forms the relatively strong $\mathrm{H}-\mathrm{F}$ bond, compared to $\mathrm{H}-\mathrm{OH}$ in (2).

$\sqrt{ }$ The End $\sqrt{ }$
"They become aggressive when you recline them."

