University of California at Berkeley College of Engineering Dept. of Electrical Engineering and Computer Sciences

EE 105 Midterm 2

Guidelines

- Closed book and notes.
- Two pages of information sheets allowed.
- Total time $=90$ minutes
(1) For the circuit shown in Fig. 1, W/L $=2$ for both M_{1} and $\mathrm{M}_{2}, \mu_{n} C_{o x}=100 \mu \mathrm{~A} / \mathrm{V}^{2}, \lambda=0.05$ $\mathrm{V}^{-1}, \mathrm{~V}_{\mathrm{Tn}}=1 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=5 \mathrm{~V}$.
a) [5 pt] Find the DC drain current at M_{2} when $\mathrm{V}_{\text {OUT }}=3 \mathrm{~V}$. Use $\lambda=0$ for this part.
b) [5 pt] Find the DC gate bias $\left(\mathrm{V}_{\mathrm{G}}\right)$ of M_{2} such that the DC output voltage $\mathrm{V}_{\mathrm{OUT}}=3 \mathrm{~V}$. Use $\lambda=0$ for this part.
c) [5 pt] Draw the small-signal equivalent circuit. Find the values of all circuit elements in the small signal circuit (e.g., $\mathrm{g}_{\mathrm{m}}, \mathrm{r}_{0}, \ldots$).
d) $[5 \mathrm{pt}]$ Find the voltage gain, $A_{v}=v_{\text {out }} / v_{s}$.
e) [5 pt] Find the output resistance of the circuit (both expression and numeric value).
f) [5 pt] Find the input resistance, and construct the two-port model of this voltage amplifier.

Fig. 1
(2) Consider the following circuit with $(\mathrm{W} / \mathrm{L})_{1}=2,(\mathrm{~W} / \mathrm{L})_{2}=1, \mu_{p} C_{o x}=50 \mu \mathrm{~A} / \mathrm{V}^{2}, \mu_{n} C_{o x}=$ $100 \mu \mathrm{~A} / \mathrm{V}^{2}, \lambda_{\mathrm{n}}=\lambda_{\mathrm{p}}=0.05 \mathrm{~V}^{-1}, \mathrm{~V}_{\mathrm{Tn}}=1 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{Tp}}=-1 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=5 \mathrm{~V}$:
a) [10 pt] The gate is biased at 2.5 V DC. Show that both transistors are in saturation regime. Find the expression and numeric value of small-signal voltage gain, $A_{v}=v_{\text {out }} / v_{s}$
b) [10 pt] Find the maximum and the minimum voltage at the output of this circuit when both transistors stay in saturation regime.

Fig. 2
(3) Consider the following circuit with 3 PMOS transistors: $(\mathrm{W} / \mathrm{L})_{1}=10,(\mathrm{~W} / \mathrm{L})_{2}=20$, $(\mathrm{W} / \mathrm{L})_{3}=100, \mu_{p} C_{o x}=50 \mu \mathrm{~A} / \mathrm{V}^{2}, \lambda=0.05 \mathrm{~V}^{-1}, \mathrm{~V}_{\mathrm{Tp}}=-1 \mathrm{~V}, \mathrm{I}_{\mathrm{REF}}=10 \mu \mathrm{~A}, \mathrm{~V}_{+}=3 \mathrm{~V}, \mathrm{~V}_{-}=-$ $3 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=100 \mathrm{~K} \Omega$.
a) [5 pt] Can you identify any functional block in this circuit (i.e., any portion of the circuit that performs a known function)? Replace that functional block, and draw a simplified circuit of the amplifier.
b) $[10 \mathrm{pt}]$ Find the expression of the voltage gain, $A_{v}=v_{\text {out }} / v_{s}$, and then find its numerical value.
c) [10 pt] Find both the expression and the numeric value of the output resistance of the amplifier.

Fig. 3
(4) The frequency response of an amplifier is shown in the figure below.

Fig. 4A

Fig. 4B
a) [8 pt] Find the transfer function of the frequency response shown in Fig. 4A.
b) [7 pt] This transfer function can be realized by the circuit in Fig. 4B. Draw the smallsignal circuit that includes C_{gd}. For simplicity, we will neglect C_{gs}. Analysis of this circuit can be simplified by Miller approximation. Draw the simplified small-signal equivalent circuit. Show the Miller capacitances explicitly in terms of other circuit parameters.
c) [10 pt] The following parameters of the circuit are given:
$\mathrm{I}_{\mathrm{BIAS}}=10 \mu \mathrm{~A}, \lambda=0.1 \mathrm{~V}^{-1}, \mathrm{r}_{\mathrm{oc}}=\infty$ (ideal current source).
If the frequency response of the amplifier matches the transfer function shown in Fig. 4A, find the numeric values of the transistor parameters: $\mathrm{C}_{\mathrm{gd}}, \mathrm{r}_{0}, \mathrm{~g}_{\mathrm{m}}$, and the circuit parameter, R_{s}.

Some equations

Threshold voltage (NMOS)
$V_{T n}=V_{F B}-2 \phi_{p}+\frac{1}{C_{o x}} \sqrt{2 q \varepsilon_{S} N_{a}\left(-2 \phi_{p}\right)}$

$$
\phi_{p}=-\frac{k T}{q} \ln \frac{N_{a}}{n_{i}}
$$

$V_{T n}=V_{T n 0}+\gamma\left(\sqrt{V_{S B}-2 \phi_{p}}-\sqrt{-2 \phi_{p}}\right)$

NMOS equations:
$I_{D}=0, \quad V_{G S}<V_{T n}$
$i_{D}=\frac{W}{L} \mu C_{O X}\left(v_{G S}-V_{T n}-\frac{V_{D S}}{2}\right) v_{D S}\left(1+\lambda V_{D S}\right), \quad V_{G S}>V_{T n}, V_{D S}<V_{G S}-V_{T n}$
$i_{D}=\frac{W}{L} \frac{\mu C_{0 X}}{2}\left(v_{G S}-V_{T n}\right)^{2}\left(1+\lambda V_{D S}\right), \quad V_{G S}>V_{T n}, V_{D S}>V_{G S}-V_{T n}$

MOS capacitances in saturation

$$
C_{g S}=(2 / 3) W L C_{o x}+C_{o v} \quad C_{o v}=L_{D} W C_{o x}
$$

MOS signal parameters:
$g_{m}=\left.\frac{\partial i_{D}}{\partial v_{G S}}\right|_{V_{G S}, V_{D S}}=\mu C_{o x} \frac{W}{L}\left(V_{G S}-V_{T n}\right)\left(1+\lambda V_{D S}\right)$
$\approx \mu C_{o x} \frac{W}{L}\left(V_{G S}-V_{T_{n}}\right)$
$=\sqrt{2 i_{D}\left(\frac{W}{L}\right) \mu C_{o x}}$
$r_{0}=\left(\left.\frac{\partial i_{D}}{\partial v_{D S}}\right|_{V_{G S}, V_{D S}}\right)^{-1} \approx \frac{1}{\lambda I_{D S}}$
$g_{m b}=\left.\frac{\partial i_{D}}{\partial v_{B S}}\right|_{Q}=\frac{\gamma g_{m}}{2 \sqrt{-V_{B S}-2 \phi_{p}}}$

EE 105 Midterm-2 Spring 2006 Prof. MingWu 1
(1) (a) Current determined by M_{1}

$$
\begin{aligned}
& V_{G S_{1}}=V_{D S_{1}}=V_{D D}-V_{o u t}=5-3=2 \mathrm{~V} \quad \text { When } V_{o u t}=3 \mathrm{~V} \\
& I_{D 2}=I_{D 1}=\left(\frac{\mathrm{W}}{\mathrm{~L}}\right) \cdot \frac{\ln C 0 x}{2}\left(V_{G S_{1}}-V_{\text {nn }}\right)^{2}=2 \cdot \frac{100}{2} \cdot 1^{2}=100 \mathrm{MA} .
\end{aligned}
$$

(b)

$$
\begin{aligned}
& I_{D_{2}}=I_{D_{1}}=\left(\frac{W}{L}\right) \cdot \frac{U n C_{C O X}}{2} \cdot\left(V_{G S_{2}}-V_{I n}\right)^{2}=100 \\
& V_{G S_{2}}-V_{I n}=1 \Rightarrow V_{G S_{2}}=2 \mathrm{~V} .
\end{aligned}
$$

(c)

$$
\begin{aligned}
g_{m_{1}} & =U_{n} C_{0 x}\left(\frac{W}{L}\right) \cdot\left(V_{G S_{1}}-V_{T_{n}}\right) \\
& =100 \cdot 2 \cdot 1=200 \cdot \mu S \\
g_{m_{2}} & =U_{n} C_{0 x}\left(\frac{W}{L}\right)\left(V_{G_{S 2}}-V_{T_{n}}\right) \\
& =200 \mathrm{US} \\
r_{01} & =\frac{1}{\partial I_{D_{1}}}=\frac{}{0.05 \cdot 100 \cdot 10^{6}}=200 \mathrm{~kJ} \\
r_{20} & =\frac{1}{2 I_{D_{2}}}=200 \mathrm{kS}
\end{aligned}
$$

$$
\begin{aligned}
& v_{g S_{1}}=0-v_{\text {out }}=-v_{\text {out }} \\
& v_{g S_{2}}=v_{s}
\end{aligned}
$$

(d) KCL at $\mathrm{D}_{2}=$

$$
\begin{aligned}
& g_{m_{2}} \cdot v_{s}+\frac{v_{0 u t}}{r_{02}}-g_{m_{1}}\left(-v_{0 u t}\right)+\frac{v_{0 u t}}{r_{01}}=0 \\
& r_{01}=r_{02}=r_{0} \\
& A_{V}=\frac{v_{0 u t}}{v_{s}}=\frac{-g_{m_{2}}}{g_{m_{1}}+\frac{2}{r_{0}}}=-\frac{2 \times 10^{-4}}{2 \times 10^{-4}+\frac{2}{2 \times 10^{5}}}=-\frac{2}{2.1}=-0.95
\end{aligned}
$$

(e) Set $v_{s}=0, v_{\text {out }} \rightarrow v_{t}$

$$
\Rightarrow v_{g s_{2}}=0
$$

$$
\begin{aligned}
& i_{t}=\frac{v_{t}}{r_{01}}+\frac{v_{t}}{r_{02}}-\left(-g_{m_{1}} v_{t}\right) \\
& \Rightarrow R_{\text {out }}=\frac{v_{t}}{r_{t}}=\left[g_{m_{1}}+\frac{2}{r_{0}}\right]^{-1}=\left[2.1 \times 10^{-4}\right]^{-1}=4.76 \mathrm{k} \Omega
\end{aligned}
$$

(f) $\quad R_{\text {in }}=\infty$

$$
\begin{aligned}
& R_{\text {in }}=\infty \\
& R_{\text {out }}=\left[g_{m_{1}}+\frac{2}{r_{0}}\right]^{-1}=4.76 \mathrm{k} \Omega \\
& A_{v}=-\frac{g_{m_{2}}}{\left[g_{m_{1}}+\frac{2}{r_{0}}\right]}=-0.95
\end{aligned}
$$

(2) (a)

$$
\begin{gathered}
V_{S E_{1}}=V_{D D}-V_{S}=2.5 \mathrm{~V}, \quad V_{G S 2}=V_{S}-0=2.5 \mathrm{~V} \\
-I_{D_{P 1}}=\left(\frac{W}{L}\right)_{1} \cdot \frac{U_{P} C_{0 X}}{2} \cdot\left(V_{S G_{1}}-\left|V_{T P}\right|\right)^{2} \cdot\left(1+\lambda_{P} V_{S D 1}\right) \\
I_{D_{2}}=\left(\frac{W}{L}\right)_{2} \cdot \frac{\mu_{n} C_{0 X}}{2}\left(V_{G S_{2}}-V_{T n}\right)^{2} \cdot\left(1+\lambda_{n} V_{D S 2}\right) \\
V_{S D_{1}}=V_{D D}-V_{\text {out }}=5-V_{\text {out }} \\
V_{D S 2}=V_{\text {out }}-0=V_{\text {out }} \\
\lambda_{n}=\lambda_{P}=\lambda
\end{gathered}
$$

$-I_{p p 1}=I_{D 2}$, since $\left(\frac{w}{L}\right)_{1} \frac{\mu_{p} l_{0} x}{2}=\left(\frac{W}{L}\right)_{2}\left(\frac{\mu_{n} \operatorname{Cox}}{2}\right)$

$$
\begin{aligned}
& \Rightarrow 1+\lambda\left(5-V_{\text {out }}\right)=1+\lambda \cdot V_{\text {out }} \\
& \Rightarrow V_{\text {out }}=2.5 \mathrm{~V}
\end{aligned}
$$

For $M_{1}, V_{S G_{1}}-\left|V_{T P}\right|=2.5-1=1.5 \mathrm{~V}<V_{S D_{1}}=2.5 \Rightarrow M_{1}$ in Saturation
For M_{2}. $V_{G S_{2}}-\left|V_{\text {Tn }}\right|=2.5-1=1.5 \mathrm{~V}<V_{\text {PS 2 }}=2.5 \mathrm{~V} \Rightarrow M_{2}$ in Saturation

$$
\begin{aligned}
v_{s g_{1}} & =0-v_{s}=-v_{s} \\
v_{g_{s 2}} & =v_{s}-0=v_{s} \\
g_{m_{1}} & =\left(\frac{\mathrm{w}}{\mathrm{~L}}\right)_{1} u_{p} C_{0 x}\left(v_{s G_{1}} \mid v_{T A}\right) \\
& =2 \cdot 50 \cdot(2.5-1)=150 \mathrm{us} \\
g_{m_{2}} & =\left(\frac{\mathrm{W}}{\mathrm{~L}}\right)_{2} u_{\mathrm{r}} C_{0 x}\left(v_{G s_{2}}-v_{T n}\right) \\
& =1.100(2.5-1)=150 \mathrm{us}
\end{aligned}
$$

$$
-I_{D_{P_{1}}}=I_{D_{2}} \cong\left(\frac{W}{L}\right)_{2} \frac{\mu_{n} C x}{2} \cdot\left(V_{G S 2}-V_{i n}\right)^{2} .
$$

$$
=50 \cdot 1.5^{2}=112.5 \mu \mathrm{~A}
$$

$$
r_{01}=r_{02}=\frac{1}{\lambda I_{0}}=178 \mathrm{k} \Omega
$$

$K C L$ at $D_{1}=D_{2}$

$$
\begin{aligned}
& g_{m_{2}}-v_{s}+\frac{v_{\text {out }}}{r_{02}}-g_{m_{1}}\left(-v_{s}\right)+\frac{v_{0 u t}}{r_{01}}=0 \\
& A_{v}=\frac{v_{\text {out }}}{v_{s}}=-\frac{g_{m_{1}}+g_{m_{2}}}{\frac{1}{r_{01} / 1 / r_{02}}}=-\frac{1}{2}\left(g_{m_{1}}+g_{m_{2}}\right) \cdot r_{0}=26.7
\end{aligned}
$$

(b) Maximum Voltage occurs when
$\frac{M_{1} \text { IS on the verge of saturation: }}{}$

$$
\begin{aligned}
V_{S D 1}=V_{D D}-V_{\text {out }} & =V_{S G 1}-\left|V_{T P}\right| \\
& =V_{D D}-V_{S}-\left|V_{T P}\right|
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow V_{S}=V_{\text {out }}-\left|V_{T P}\right| \\
& I_{1}=\left(\frac{W}{L}\right)_{1} \frac{u_{P} C_{0 x}}{2}\left[V_{D D}-V_{\text {out }}\right]^{2}=I_{2}=\left(\frac{W}{L}\right)_{2} \frac{u_{n} C o x}{2}\left[\left(V_{\text {out }}-\left|V_{T P}\right|\right)-V_{T_{n}}\right]^{2} \\
& \Rightarrow V_{P D}-V_{\text {out }}=V_{\text {out }}-\left|V_{T P}\right|-V_{\text {n }} \Rightarrow V_{\text {out }}=\frac{1}{2}\left(V_{D D}+\left|V_{T P}\right|+V_{\text {Tn }}\right)=3,5
\end{aligned}
$$

Minimum Vout: M_{2} at verge of sat. $\Rightarrow V_{s}=V_{\text {out }}+V_{\text {in }}$

$$
\begin{aligned}
I_{1}=I_{2} \Rightarrow V_{D D}-\left(V_{\text {out }}+V_{\text {Tn }}\right)-\left|V_{\text {TD }}\right| & =V_{\text {out }} \\
& \Rightarrow V_{\text {out }}=\frac{1}{2}\left(V_{D D}-\left|V_{\text {TD }}\right|-V_{\text {Tn }}\right)=1.5
\end{aligned}
$$

(3) (a) M_{1} and M_{2} form current mirror

$$
I_{D_{2}}=I_{R E F} \cdot\left(\frac{W}{L}\right)_{2} /\left(\frac{W}{L}\right)_{1}=2 I_{R E F}=20 \mu A
$$

The resistance looking into

$$
M_{2}=r_{02}
$$

(b)

$$
v_{s g_{3}}=\left(v_{\text {out }}-v_{s}\right)
$$

KCL at $s: g_{m_{3}}\left(v_{0 u t}-v_{s}\right)+\frac{v_{0 u t}}{r_{03} / / r_{02}}=0$

$$
\Rightarrow A_{v}=\frac{v_{0 n t}}{v_{S}}=\frac{g_{m_{3}}}{g_{m_{3}}+\frac{1}{r_{03} / / r_{02}}}
$$

Use $D C$ analysis to find $g_{m 3}, r_{02}, r_{03}$

$$
\begin{aligned}
& I_{D_{3}}=20 \mu A=\left(\frac{W}{L}\right)_{3} \cdot \frac{U_{P} C_{0 x}}{2} \cdot\left(V_{S G}-\left|V_{T P}\right|\right)^{2}=100 \cdot \frac{50}{2}\left(V_{S G}-\left|V_{T P}\right|\right)^{2} \mu A \\
& V_{S G}-\left|V_{T P}\right|=\sqrt{\frac{40}{5000}}=0.089 \\
& g_{m_{3}}=\left(\frac{W}{L}\right)_{3} U_{P} C_{0 x}\left(V_{G S}-\left|V_{T P}\right|\right)=\frac{2 I_{D 3}}{\left(V_{S G}-\left|V_{T P}\right|\right)}=449 \mu S \\
& V_{D 3}=\frac{1}{\lambda I_{D 3}}=\frac{1}{0.05 .20 \times 10^{-6}}=1 \mathrm{M} \Omega . \quad r_{02}=\frac{1}{k I_{D_{2}}}=1 \mathrm{M} \Omega .
\end{aligned}
$$

(c) set $v_{s}=0, v_{s g_{3}}=v_{\text {out }}-0=v_{\text {out }} \rightarrow v_{t}$

$$
\begin{aligned}
& \bar{c}_{t}=\frac{v_{t}}{r_{02} / / r_{03}}+g_{m} v_{t} \\
\Rightarrow & R_{\text {out }}=\frac{v_{t}}{\bar{L}_{\tau}}=\frac{1}{g_{m 3}+\frac{1}{c_{b_{2}} / / r_{03}}}=2.2 \mathrm{k} \Omega
\end{aligned}
$$

(4) (a)

$$
\begin{aligned}
& \omega_{p_{1}}=10^{5}, \quad \omega_{p_{2}}=10^{7} \\
& H(j \omega)=\frac{100}{\left(1+j \frac{\omega}{10^{5}}\right)\left(1+j \frac{\omega}{10^{7}}\right)}
\end{aligned}
$$

(b)

$$
\begin{aligned}
& C_{M_{1}}=\left(1+g_{m} r_{0}\right) \cdot C_{g d} \\
& C_{M_{2}}=\left(1+\frac{1}{g_{m} r_{0}}\right) \cdot C_{g d}
\end{aligned}
$$

(c)

$$
\begin{aligned}
& \gamma_{0}=\frac{1}{\lambda I_{B I A S}}=\frac{1}{0.1 \times 10 \times 10^{-6}}=1 \mathrm{M} \Omega \\
& \tau_{1}=R_{S} C_{M_{1}}=R_{S} \cdot\left(1+g_{m} r_{0}\right) \cdot C_{g} \\
& \tau_{2} \simeq r_{0} \cdot C_{g d} \\
& C_{g d}=\frac{\tau_{2}}{r_{0}}=\frac{\omega_{p_{2}}^{-1}}{\gamma_{0}}=\frac{10^{-7}}{10^{6}}=10^{-13} \\
& g_{m} \gamma_{0}=40 d B=10^{2}=100 \\
& g_{m}=\frac{100}{10^{6}}=10^{-4}=100 \mathrm{us} \\
& \tau_{1}=10^{-5} \approx R_{S} \cdot(101) \cdot 10^{-13} \approx R_{s} \cdot 10^{-11} \\
& \Rightarrow R_{S}=10^{6}=1 \mathrm{M} \Omega
\end{aligned}
$$

