
1 Yildiz 2019 Midterm 2 Problem 1 Solution - Icy Ramp

First, let’s find the friction needed for a block at rest to stay at rest. Gravity, friction, and the normal force all act on the
block, as shown on the FBD. Since a block would slide down the ramp without friction, we’ll guess that the frictional force
points upslope.

From force balance in the normal direction, we find that

N = mg cos(θ)

and

F = mg sin(θ).

We also know that F ≤ Nµs, so mg sin(θ) ≤ mg cos(θ)µ(x), giving us the condition that

µ(x) = Ax > tan(θ).

This means that a block must reach at least a height xmin = tan(θ)/A for friction to keep it from sliding back down.
The question now is how fast the block should be moving to reach xmin. We can find this with conservation of energy.

When sliding, the frictional force backwards is just F = Nµ = −Amg cos(θ)x, which is negative because it’s pointing down
the slope. The total work done by friction while the block slides a distance xmin is then

W =

∫
Fdx =

∫ xmin

0

−Amg cos(θ)xdx = −Amg cos(θ)
x2min

2
.

From the start of the block’s slide to its end at xmin, the net change in total energy will be the negative work done by
friction. We can write this as

∆E = Uf −Ki = mgxmin sin(θ) − mv20
2

= −Amg cos(θ)
x2min

2
= W.

We can now just solve for v0 and plug in the fact that xmin = tan(θ)/A. Once simplified, this gives

v0 =

√
3g sin2(θ)

A cos(θ)
.

Checking a few limits, we see that when θ = 0 the min velocity is zero, and when θ = π/2 - when the ramp is vertical -
no velocity is large enough, which makes sense.

2 Yildiz 2019 Midterm 2 Problem 2 Solution - Rocket

The key equation here is Fext = −dm
dt vrel +m(t)dv

dt . There’s no external force, so dm
dt vrel = m(t)dv

dt ; in words, this says that
the only force on the mass m is the recoil force from ejecting the fuel. Since the problem’s only asking about the speed, not
the velocity, and since it’s clear in which direction a rocket should move, we won’t worry about the sign of v. Let’s use the
shorthand K = dm

dt .

(a) From the above equation, at t = 0, a = dv
dt = K vrel

m0
. The problem tells us that K = m0

120s , so
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a =
2400m/s

120s
= 20m/s.

(b) The challenge now is to find how this rocket moves. If you don’t have the rocket equation on your formula sheet,
here’s how it’s derived.

We know that the mass left in the rocket as a function of time is given by m(t) = m0−Kt. This fact buys us the following
differential equation, which we can solve:

Kvrel = (m0 −Kt)
dv

dt

Kvrel
m0 −Kt

dt = dv

To integrate, we let tf be the time at the end of the burn, vf be the final velocity, and mf be the mass left in the rocket
after the burn. ∫ tf

0

Kvrel
m0 −Kt

dt =

∫ vf

0

dv[
− vrel ln(m0 −Kt)

]tf
0

= vf

vrel ln
( m0

m0 −Ktf

)
= vf

vf = vrel ln

(
m0

mf

)
= (2400m/s) ln(4).

This vf is the solution.
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Problem 3

a) If r is constant, ∆s = r∆θ. As ∆θ gets infinitesemal, r(θ) is approximately constant so ds = r(θ)dθ = r0dθ + βθdθ.
b)

s =

∫ s

s=0

ds =

∫ θ

θ=0

(r0 + βθ) dθ = r0θ +
β

2
θ2

c)

vt = r0θ +
β

2
θ2 =⇒ β

2
θ2 + r0θ − vt = 0

=⇒ θ =
−r0 ±

√
r20 + 2βvt

β

Since the rotation of the CD is said to be positive in the problem statement, we take the positive θ, so

θ(t) =
−r0 +

√
r20 + 2βvt

β

d)

ω(t) =
dθ

dt
=

d

dt

1

β

√
r20 + 2βvt =

1

β

1

2

2βv√
r20 + 2βvt

=
v√

r20 + 2βvt

e)

α(t) =
dω

dt
=

d

dt
v
[
r20 + 2βvt

]−1/2
=

−v(2βv)

2(r20 + 2βvt)
3/2

=
−βv2

(r20 + 2βvt)3/2

So the angular acceleration α is not constant.
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Problem 4

(a) Note that the sphere rolls around the two points-of-contact with the rail (see figure 1). The rolling without
slipping condition needs to be written with respect to the radius of this circle:

vcm = ω
√
R2 − (d/2)2 ≡ ωR′. (1)

It is going to be important to keep track of R and R′ throughout the problem.

(a) Front view (b) Side view

Figure 1

(b) Draw the free-body diagram for the object. This results in an equation for torques and an equation for forces.

ma = mg sin θ − 2fs (2)

Iα = 2fsR
′, (3)

where we are calculating the torque around the axis passing through the center of mass with the CM. We have
2 equations and 3 unknowns, which means we need an extra equation. We know that the sphere is rolling
without slipping, which implies

α =
a

R′ . (4)

You could get this either by differentiating part (a), or by noting that the lever arm of the torque is R′. We
now solve for a using Icm = 2/5MR2 (not R′2)

a =
g sin θ(
I

mR′2 + 1
) =

g sin θ
2
5

R2

R′2 + 1
, (5)

where R′ =
√
R2 + (d/2)2.

(c) Use conservation of energy

mgh =
1

2
Iω2 +

1

2
mv2cm =

1

2
I
v2cm
R′2 +

1

2
mv2cm. (6)

Solve for vcm to obtain:

vcm =

√
gh

1
5

R2

R′2 + 1
2

. (7)
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Problem 5

a) We want a function ρ(r) of r that decreases linearly from 0 to R, with the boundary conditions that

ρ(r = 0) = ρ0 (1)

and
ρ(r = R) =

ρ0
4

(2)

let ρ(r) = ρ0(1 − kr). Applying the second boundary condition we find k = 3
4R

and

ρ(r) = ρ0(1 − 3

4R
r) (3)

b) The total mass is given by

Mtot =

∫
dm (4)

using the relationship between density and mass, dm = ρdV . This gives

Mtot =

∫ R

0

ρ(r)dV (5)

and

Mtot =

∫ R

0

∫ π

0

∫ 2π

0

ρ0(1 − 3

4R
r)r2Sin(θ)drdθdφ (6)

the angular integrals yield

Mtot = 4π

∫ R

0

ρ0(1 − 3

4R
r)r2dr (7)

and the radial integral gives

Mtot = πρ0

[
4R3

3
− 3R3

4

]
(8)

Simplifying, we arrive at our final answer

Mtot =
7πρ0R

3

12
(9)

c) The force of gravity acts like all the mass of the planet is concentrated at the center. Newtonian gravitational force is
given by

Fg = G
mm2

r2
= mpg (10)

divide both sides by m to get
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g = G
mp

r2
(11)

use the answer in the previous part to get

g = G
7πρ0R

3

12r2
(12)
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